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Abstract
We analyse the asymptotics of the Wigner 3j -symbol as a matrix element
connecting eigenfunctions of a pair of integrable systems, obtained by lifting
the problem of the addition of angular momenta into the space of Schwinger’s
oscillators. A novel element is the appearance of compact Lagrangian
manifolds that are not tori, due to the fact that the observables defining the
quantum states are noncommuting. These manifolds can be quantized by
generalized Bohr–Sommerfeld rules and yield all the correct quantum numbers.
The geometry of the classical angular momentum vectors emerges in a clear
manner. Efficient methods for computing amplitude determinants in terms of
Poisson brackets are developed and illustrated.

PACS numbers: 03.65.Sq, 02.20.Qs, 02.30.Ik, 02.40.Yy

1. Introduction

This paper is a study of the asymptotics of the Wigner 3j -symbol from the standpoint of
semiclassical mechanics, that is, essentially multidimensional WKB theory for integrable
systems. The principal result itself, the leading asymptotic expression for the 3j -symbol,
has been known since Ponzano and Regge (1968). Nevertheless our analysis presents several
novel features. One is the exploration of Lagrangian manifolds in phase space that are not
tori (the usual case for eigenstates of integrable systems). Instead, one of the states entering
into the 3j -symbol is supported semiclassically on a Lagrangian manifold that is a nontrivial
3-torus bundle over SO(3). This manifold can be quantized by generalized Bohr–Sommerfeld
rules, whereupon it yields the exact eigenvalues required by the quantum 3j -symbol, as well
as the correct amplitude and phase of its asymptotic form. This unusual Lagrangian manifold
arises because the quantum state in question is an eigenstate of a set of noncommuting
operators. Other novel features include the expression of the asymptotic phase of the 3j -
symbol in terms of the phases of Schwinger’s harmonic oscillators and the determination of
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stationary phase points by geometrically transparent operations on angular momentum vectors
in three-dimensional space. Yet another is the representation of multidimensional amplitude
determinants as matrices of Poisson brackets. Representations of this type have been known
for some time, but they are generalized here to the case of sets of noncommuting operators. The
final result is a one-line derivation of the amplitude of the asymptotic form of the 3j -symbol.
Similarly, brief derivations are possible for the amplitudes of the 6j - and 9j -symbols.

In addition, our analysis of the 3j -symbol may prove to be useful for the asymptotic
study of the 3nj -symbols for higher n. The leading order asymptotics of the 6j -symbol
were derived by Ponzano and Regge (1968), but the understanding of the asymptotics of the
9j -symbol is still incomplete. These symbols are important in many applications in atomic,
molecular and nuclear physics, for example, the 9j -symbols are needed in atomic physics to
convert from an LS-coupled basis to a jj -coupled basis. These symbols are all examples of
closed spin networks, of which more elaborate examples occur in applications, each of which
presents a challenge to asymptotic analysis. Moreover, in recent years new interest in this
subject has arisen from researches into quantum computing (Marzuoli and Rasetti 2005) and
quantum gravity, where new derivations of the asymptotics of the Wigner 6j -symbol have
been produced as well as generalizations to other groups such as the Lorentz group. The
3nj -symbols and their asymptotics have also been used recently in algorithms for molecular
quantum mechanics (De Fazio et al 2003, Anderson and Aquilanti 2006), which exploit the
connections with the theory of discrete orthogonal polynomials (Aquilanti et al 1995, 2001a,
2001b and references therein).

The asymptotic formula for the 3j -symbol is closely related to that for the 6j -symbol,
being a limiting case of the latter. These were first derived by Ponzano and Regge (1968), using
intuitive methods and building on Wigner’s earlier result for the amplitude of the 6j -symbol
(Wigner 1959). Later Neville (1971) analysed the asymptotics of the 3j - and 6j - symbols
by a discrete version of WKB theory, applied to the recursion relations satisfied by those
symbols, without apparently knowing of the work of Ponzano and Regge. His formulae are
not presented in a particularly transparent or geometrical manner, but appear to reproduce some
of the results of Ponzano and Regge. The formula for the 3j -symbol (in the form of Clebsch–
Gordan coefficients) was later derived again by Miller (1974), who presented it as an example
of his general theory of semiclassical matrix elements of integrable systems. Miller called on
the fact that the phase of the semiclassical matrix element is a generating function of a canonical
transformation and used the classical transformation that most obviously corresponds to the
quantum addition of angular momenta to reconstruct the generating function. The method
leads to a difficult integral, which, once done, yields the five terms in the phase of the
asymptotic formula for the 3j -symbol. Somewhat later Schulten and Gordon (1975a, 1975b)
presented a rigorous derivation of the Ponzano and Regge results for the 3j - and 6j -symbols,
using methods similar to those of Neville but carrying them out in a more thorough and
elegant manner. Schulten and Gordon also provided uniform approximations for the transition
from the classical to nonclassical regimes, work that has recently been reanalysed (Geronimo
et al 2004) and extended to non-Euclidean and quantum groups (Taylor and Woodward 2005).
Somewhat later Biedenharn and Louck (1981b) presented a review and commentary of the
results of Ponzano and Regge, as well as a proof based on showing that the result satisfies
asymptotically a set of defining relations for the 6j -symbol. More recently, the asymptotics
of the 3j -symbol was derived again by Reinsch and Morehead (1999), working with an
integral representation constructed out of Wigner’s single-index sum for the Clebsch–Gordan
coefficients. About the same time, Roberts (1999) derived the Ponzano and Regge results for
the 6j -symbol, using methods of geometric quantization. Finally, Freidel and Louapre (2003)
presented a derivation of the asymptotic expression for the square of the 6j -symbol, based on
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an analysis of an SU(2) path integral. This work was part of a larger study of generalizations
of the 6j -symbol to other groups (for example, the 10j -symbol) that are important in quantum
gravity. See also Barrett and Steele (2003) and Baez, Christensen and Egan (2002).

There are many variations on the calculation of the asymptotic forms of the 3nj -symbols
that have been considered by different authors. There are asymptotic forms inside and outside
the classically allowed regions, uniform approximations connecting two or more of these
regions, asymptotic forms when only some of the quantum numbers are large and others
small, and higher order terms. Ponzano and Regge (1968) covered many of these issues, while
Reinsch and Morehead computed some higher order terms.

The outline of this paper is as follows. In section 2, we review the semiclassical mechanics
of integrable systems in the generic case that one has sets of commuting observables, drawing
attention to an expression for the amplitude determinant in terms of Poisson brackets. In section
3, we review the Schwinger model for representing angular momentum operators in terms of
harmonic oscillators. This model allows us to express angular momentum eigenstates in terms
of wavefunctions on R

n, which we use in section 4 to express the 3j -symbols in terms of
scalar products of such functions. In section 5, we study the Schwinger model from a classical
standpoint, in which an important element is the reduction of the Schwinger phase space (the
‘large phase space’) by the torus group T 3, producing the Poisson manifold R

3 × R
3 × R

3

(‘angular momentum space’) and the reduced phase space S2 × S2 × S2 (the ‘small phase
space’). In sections 6 and 7, we study the two Lagrangian manifolds that support the states
whose scalar product is the 3j -symbol. One is a conventional invariant torus (the ‘jm-torus’),
but the other, what we call the ‘Wigner manifold’, is compact and Lagrangian but not a torus.
This manifold supports Wigner’s state of zero total angular momentum that enters into the
definition of the 3j -symbols. In sections 8, we study the intersections of the jm-torus and the
Wigner manifold, which are the stationary phase points of the 3j -symbol, and show how these
can be found by elementary geometrical considerations in three-dimensional space (that is, by
rotating angular momentum vectors). The intersection of the two manifolds turns out to be a
pair of 4-tori. In section 9, we compute the action integrals along the respective Lagrangian
manifolds to points on the two 4-tori, whose difference is the Ponzano and Regge phase of
the 3j -symbol. In section 10, we apply generalized Bohr–Sommerfeld quantization to the
jm-torus and the Wigner manifold, a standard procedure for the jm-torus, although it leads in
an interesting way to the extra 1/2 in the classical values representing the lengths of the angular
momentum vectors. This extra 1/2 was guessed by Ponzano, Regge and Miller and derived
systematically by Schulten and Gordon, Reinsch and Morehead, Roberts and by us, although
it enters somewhat asymmetrically in the work of Roberts. In our work, it is essentially a
Maslov index. In section 11, we generalize known expressions for the amplitude determinant
of semiclassical matrix elements of integrable systems in terms of Poisson brackets to the case
of collections of noncommuting observables (whose level sets nevertheless are Lagrangian).
The result allows us to compute the amplitude of the 3j -symbol as a 2 × 2 matrix of Poisson
brackets. We then put all the pieces together to obtain the final asymptotic form. Finally,
in section 12, we present some comments on the work, prospects for further work and
conclusions.

2. Semiclassical wavefunctions for integrable systems

The semiclassical mechanics of integrable systems is well understood (Einstein 1917, Brillouin
1926, Keller 1958, Percival 1973, Berry and Tabor 1976, Gutzwiller 1990, Brack and Bhaduri
1997, Cargo et al 2005a, 2005b). Here, we summarize the basic facts, some of which require
modification for our application.
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We consider the quantum mechanics of a particle moving in R
n (with wavefunction

ψ(x1, . . . , xn) and Hilbert space L2(Rn)). We speak of an integrable system if we have
a complete set of commuting observables {Â1, . . . , Ân} acting on this Hilbert space. We
use hats to distinguish quantum operators from classical quantities with a similar meaning.
Sometimes the Hamiltonian is one of these operators or a function of them, but in our
application there is no Hamiltonian, or rather all Âi’s are Hamiltonians on an equal footing.
These operators may be converted into their classical counterparts by the Weyl transform
(Weyl 1927, Wigner 1932, Groenewold 1946, Moyal 1949, Voros 1977, Berry 1977, Balazs
and Jennings 1984, Hillery et al 1984, Littlejohn 1986, McDonald 1988, Estrada et al 1989,
Gracia-Bondı́a and Várilly 1995, Ozorio de Almeida 1998). The Weyl transforms (or Weyl
‘symbols’) of these operators are functions on the classical phase space R

2n, that is, functions
of (x1, . . . , xn;p1, . . . , pn). They are normally even power series in h̄, as we assume, of which
the leading term is the ‘principal symbol’. We denote the principal symbols of {Â1, . . . , Ân}
by {A1, . . . , An} (without the hats). In view of the Moyal star product representation (Moyal
1949) of the vanishing commutators [Âi, Âj ] = 0, the principal symbols Poisson commute,
{Ai,Aj } = 0, thus defining a classically integrable system (Arnold 1989, Cushman and Bates
1997). (We use curly brackets {} both to denote a set and for Poisson brackets.) Then according
to the Liouville–Arnold theorem (Arnold 1989), the compact level sets of {A1, . . . , An} are
generically n-tori. The Hamiltonian vector fields generated by Ai are commuting and linearly
independent of the tori; thus the tori are not only the level sets of Ai, they are also the orbits
of the Abelian group generated by the corresponding Hamiltonian flows. One can define an
action function S on a torus as the integral of

∑
i pi dxi relative to some initial point; it is

multivalued because of the topologically distinct paths going from the initial to the final point,
but otherwise is independent of the path.

Let Ai = ai be one of these tori (Ai are the functions, ai the values). The torus has a
projection onto configuration space defining a classically allowed region in that space; the
inverse projection is multivalued. The function S may be projected onto configuration space,
defining a function we shall denote by Sk(x, a) (where for brevity x and a stand for (x1, . . . , xn)

and (a1, . . . , an), etc). Here k labels the branches of the inverse projection; function Sk has
an additional multivaluedness due to the choice of contour connecting initial and final points
on the torus. Then as explained by Arnold (1989), S(x, a) is the generating function of
the canonical transformation (x, p) → (α,A), where α = (α1, . . . , αn) is the set of angle
variable conjugate to the conserved quantities (A1, . . . , An). Action variables may be defined in
the usual way as (1/2π)

∮
p dx around the independent basis contours on the torus; these are

functions of Ai and their conjugate variables are the angles that cover the torus once when
varying between 0 and 2π. Sometimes however it is more convenient to work with Ai instead
of the actions (Ai are not necessarily actions, and their flows are not necessarily periodic on
the torus).

Tori are quantized, that is, associated with a consistent solution of the simultaneous
Hamiltonian–Jacobi and amplitude transport equations for the operators Âi, only if they satisfy
the Bohr–Sommerfeld or EBK quantization conditions, discussed in section 10. Associated
with a quantized torus is a semiclassical wavefunction in configuration space, which in the
classically allowed region is given by

ψ(x) = 〈x|a〉 = 1√
V

∑
k

|�k|1/2 exp{i[Sk(x, a) − µkπ/2]}. (1)

The meaning of this formula is the following. First, here and below we set h̄ = 1. Next, given
the point x in the classically allowed region, its inverse projection onto the quantized torus
is a set of points indexed by k. We assume that the projection is nonsingular at these points
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(we are not at a caustic). The phase Sk(x, a) is the integral of p dx from a given initial point
on the torus to the kth point of the inverse projection, and µk is the Maslov index (Maslov
1981, Mishchenko et al 1990, de Gosson 1997) of the same path. The amplitude determinant
�k is given by

�k = det
∂2Sk(x, a)

∂xi∂aj

= [det{xi, Aj }]−1, (2)

where in the second form the Poisson brackets are evaluated on the kth branch of the
inverse mapping from x to the Lagrangian manifold. The amplitude determinant is a density
on configuration space (to within the semiclassical approximation, the probability density
corresponding to a single branch), which is the projection onto configuration space of a
density on the torus. The latter density is required to be invariant under the Hamiltonian flows
generated by Ai (this is the meaning of the amplitude transport equations for Ai); in terms
of the variables αi conjugate to Ai this means that the density is constant (it is the n-form
dα1 ∧ · · · ∧ dαn). Finally, the quantity V in (1) is the volume of the torus, measured with
respect to this density. If Ai are action variables, then V = (2π)n. The overall phase of the
wavefunction (its phase convention) is determined by the choice of the initial point on the
torus.

Now let {Â1, . . . , Ân} and {B̂1, . . . , B̂n} be two complete sets of commuting observables,
with principal symbols Ai and Bi, conjugate angles αi and βi and action functions SA(x, a)

and SB(x, b), and let a and b refer to two quantized tori (an A-torus and a B-torus). We
assume initially that the two sets of functions Ai and Bi are independent. We compute 〈b|a〉
as an integral of the wavefunctions over x, evaluated by the stationary phase approximation.
The stationary phase points are geometrically the intersections of the A-torus with the B-torus.
Generically, the two tori intersect in finite set of isolated points that we index by k, denoting
the corresponding α and β values by αk and βk. (For given k, αk and βk refer to the same point
in phase space.) Then, the result is

〈b|a〉 = (2π i)n/2

√
VAVB

∑
k

|�k|1/2 exp{i[SA(αk) − SB(βk) − µkπ/2]}. (3)

Here, VA and VB are the volumes of the respective tori, as in (1), and the actions SA and SB

are considered functions of the α or β coordinates on the respective tori.
As shown by Littlejohn (1990), the amplitude determinant �k can be written in terms of

the Poisson brackets of the observables Ai and Bi,

�k = [det{Ai, Bj }]−1. (4)

The Maslov index µk in (3) is not the same as in (1).
Another case considered by Littlejohn (1990) is the one in which some of Ai are

functionally dependent on some of Bi. For this case, it is convenient to assume that the
first r of the two sets of variables A and B are functionally independent, while the last n− r are
identical, so that A = {A1, . . . , Ar, Ar+1, . . . , An} and B = {B1, . . . , Br, Ar+1, . . . , An}. Then
the stationary phase points are still the intersections of the two n-tori, but now the intersections
are generically a finite set of isolated (n−r)-tori, upon which linearly independent vector fields
are the Hamiltonian vector fields associated with the (Ar+1, . . . , An). Such an (n − r)-torus is
the orbit of the Abelian group action generated by the corresponding Hamiltonian flows. In
this case, we find

〈b|a〉 = (2π i)r/2

√
VAVB

∑
k

Vk|�k|1/2 exp{i[SA(αk) − SB(βk) − µkπ/2]}, (5)
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where now Vk is the volume of the kth intersection (an (n − r)-torus on which the volume
measure is dαr+1 ∧ · · · ∧ dαn), and where now the amplitude determinant �k is still given by
(4), except that it is understood that only the first r of A’s and B’s enter (thus, it is an r × r

determinant instead of an n × n one). The phase difference SA − SB for branch k can be
evaluated at any point on the (n − r)-torus which is the intersection, since the integral of p dx

back and forth along a path lying in the intersection vanishes.

3. The Schwinger model

The Schwinger (or SU(2) or boson) model for angular momenta is explained well in
Schwinger’s original paper (reprinted by Biedenharn and van Dam (1965), the original 1952
paper being unpublished) and reworked in an interesting way by Bargmann (1962). For
further perspective see Biedenharn and Louck (1981a) and Smorodinskii and Shelepin (1972).
Introductions are given by Sakurai (1994) and Schulman (1981). Here we define the notation
for the Schwinger model and emphasize some aspects that will be important for our application.

In the Schwinger model each independent angular momentum vector is associated with
two harmonic oscillators. We shall refer to the 1j -, 3j -, etc, models, depending on how many
independent angular momenta there are. The number of j ’s in the model is not necessarily
the number of j ’s in the Wigner symbol; for example, Miller (1974) used a 2j -model to study
the Clebsch–Gordan coefficients, essentially the 3j -symbols.

We start with the 1j -model, for which there are two harmonic oscillators indexed by
Greek indices µ, ν, . . . = 1, 2. (These are just labels of the two oscillators; sometimes other
labels such as 1/2,−1/2 are more suitable.) The wavefunctions are ψ(x1, x2) and the Hilbert
space is H = L2(R2). We write Ĥµ = (1/2)

(
x̂2

µ + p̂2
µ

)
for the two oscillator Hamiltonians,

and we define Ĥ = ∑
µ Ĥµ. The eigenvalues of Ĥ are n + 1, with n = 0, 1, . . . , and energy

level En is (n + 1)-fold degenerate. We introduce usual annihilation and creation operators
aµ = (x̂µ + ip̂µ)/

√
2, a†

µ = (x̂µ − ip̂µ)/
√

2, omitting the hats on a’s and a†’s since these will
always be understood to be operators. We define operators

Î = 1

2

∑
µ

a†
µaµ = 1

2
(Ĥ − 1) (6)

and

Ĵ i = 1

2

∑
µν

a†
µσ i

µνaν, (7)

where σ i is the ith Pauli matrix. Here and below we use indices i, j, . . . = 1, 2, 3 (or x, y, z

if that is more clear) to denote the Cartesian components of a 3-vector. Note that Î and Ĵ i are
quadratic functions of x’s and p’s of the system. The eigenvalues of Î are n/2 for n = 0, 1, . . . .

These operators satisfy the commutation relations [Î , Ĵ i] = 0 and [Ĵ i , Ĵ j ] = i
∑

k εijkĴ k. We

also define Ĵ2 = ∑
i Ĵ

2
i , so that [Î , Ĵ2] = 0 and [Ĵ i , Ĵ2] = 0. It avoids some confusion with

indices to always denote the square of a vector by a bold face symbol, as we have done here.
We note the important operator identity Ĵ2 = Î (Î + 1), expressing the quartic operator Ĵ2 as a
function of the quadratic operator Î .

From this identity and the known eigenvalues of Î it follows that the eigenvalues of Ĵ2 are
(n/2)[(n/2) + 1], for n = 0, 1, . . . , which leads us to identify n/2 with j = 0, 1/2, 1, . . . ,

the usual angular momentum quantum number. The nth (or j th) eigenspace of Ĥ or Î is
(2j + 1)-dimensional, and so must contain a single copy of the j th irrep of SU(2). Each
irrep (both integer and half-integer values of j ) occurs precisely once in the Hilbert space H.
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We denote these subspaces by Hj , and write H = ∑
j ⊕Hj . The standard basis in Hj is the

eigenbasis of Ĵ z = 1
2 (Ĥ 1 − Ĥ 2), with the usual quantum number m, so that if nµ are the usual

quantum numbers of the oscillators Ĥµ, then n1 = j + m, n2 = j − m. The simultaneous
eigenstates of Ĵ2 and Ĵ z are |jm〉 or |n1n2〉.

In the Nj -model we index the angular momenta with indices r, s, . . . = 1, . . . , N. The
oscillators are now labelled Ĥ rµ with coordinates and momenta x̂rµ and p̂rµ and annihilation
and creation operators arµ and a

†
rµ. The wavefunctions are now ψ(x11, x12, x21, . . . , xN2) and

the Hilbert space is L2(R2N). We define operators

Î r = 1

2

∑
µ

a†
rµarµ, (8)

Ĵ ri = 1

2

∑
µν

a†
rµσ i

µνarν, (9)

Ĵ2
r =

∑
i

Ĵ
2
ri , (10)

Ĵ i =
∑

r

Ĵ ri or Ĵ =
∑

r

Ĵr , (11)

Ĵ2 =
∑

i

Ĵ
2
i , (12)

most of which are obvious generalizations from the case N = 1. These satisfy the identity

Ĵ2
r = Î r (Î r + 1), (13)

and the commutation relations [Î r , Ĵ si] = [
Î r , Ĵ2

s

] = 0. Each angular momentum vector Ĵr

also obeys the standard commutation relations among its components and square, which we
omit, as does any sum of these angular momenta (partial or total).

The angular momenta generate an action of [SU(2)]N on the Hilbert space (one copy
for each pair of oscillators). Here we discuss only the simultaneous rotation of all oscillator
degrees of freedom by the same element of SU(2), which is generated by the total angular
momentum, but partial rotation operators can also be defined and are useful. We begin with
the commutation relations,

[Ĵ i , arµ] = −1

2

∑
ν

σ i
µνarν, (14)

[
Ĵ i , a

†
rµ

] = +
1

2

∑
ν

a†
rνσ

i
νµ, (15)

which define the transformation properties of the operators arµ, a
†
rµ under infinitesimal

rotations. We define a finite rotation operator in axis-angle or Euler angle form by

U(n, θ) = exp(−iθ n · J), (16)

U(α, β, γ ) = U(z, α)U(y, β)U(z, γ ), (17)

where n is a unit vector defining an axis and θ an angle of rotation about that axis, and where
x, y and z are respectively the unit vectors along the three coordinate axes. The U operators
form a faithful representation of SU(2).

We use the symbol u(n, θ) or u(α, β, γ ) for the 2 × 2 matrices belonging to SU(2), in
axis-angle or Euler angle parameterization (not to be confused with the U operators that act
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on the Hilbert space of the 2N oscillators). Thus,

u(n, θ) = exp(−iθ n · σ/2) = cos θ/2 − in · σ sin θ/2. (18)

The exponentiated versions of equations (14) and (15) are

U †arµU =
∑

ν

uµνarν, U †a†
rµU =

∑
ν

a†
rν(u

−1)νµ, (19)

where both U and u have the same parameterization. In the language of irreducible tensor
operators the pair of operators (ar1, ar2) transforms as a spin-1/2 operator.

Similarly, vector operators are the angular momenta themselves, which satisfy the
conjugation relations,

U †Ĵ riU =
∑

j

Rij Ĵ rj , (20)

where R is the 3×3 orthogonal rotation matrix with the same axis and angle as U. The relation
between R and u (with the same axis and angle) is

Rij = 1
2 tr(U †σiUσj ). (21)

This is the usual projection from SU(2) to SO(3), in which the inverse image of a given
R ∈ SO(3) is a pair (u,−u) in SU(2).

4. The Wigner 3j-symbols in the Schwinger model

We now define the 3j -symbols in the context of the Schwinger model. We take the
3j -model, N = 3. One complete set of commuting observables on the Hilbert space
H ⊗ H ⊗ H is (Î 1, Î 2, Î 3, Ĵ 1z, Ĵ 2z, Ĵ 3z), with corresponding eigenstates |j1j2j3m1m2m3〉 =
|j1m1〉|j2m2〉|j3m3〉. Another complete set arises in the usual problem of addition of three
angular momenta, in which we consider the values of j and m (the quantum numbers of Ĵ2

and Ĵ z) that occur in the product space Hj1 ⊗ Hj2 ⊗ Hj3 for fixed values of (j1, j2, j3), a
subspace of H ⊗ H ⊗ H. The set of the five commuting operators (Î 1, Î 2, Î 3, Ĵ 3, Ĵ2) that
arises in this way is however not complete (the simultaneous eigenstates in general possess
degeneracies), so to resolve these we introduce a sixth commuting operator, conventionally
taken to be Ĵ2

12 = (Ĵ1 + Ĵ2)
2 with quantum number j12 (Ĵ2

23 or Ĵ2
13 will also work).

The Wigner 3j -symbols only involve the case j = 0, but we mention the others anyway
because the foliation of the classical phase space into Lagrangian manifolds involves the other
values. The usual rules for the addition of angular momenta show that if (j1, j2, j3) satisfy the
triangle inequality, then there exists precisely a one-dimensional subspace of Hj1 ⊗Hj2 ⊗Hj3

with j = 0; if they do not, then no such subspace exists. If we enlarge our point of view to
the full Hilbert space H ⊗H ⊗H, then there is an infinite-dimensional subspace with j = 0,

a basis in which is specified by all triplets (j1, j2, j3) that satisfy the triangle inequalities. If
j = 0, then the quantum number m is superfluous, since m = 0; the quantum number j12 is
superfluous as well, since j12 = j3.

We note that if 〈ψ |Ĵ2|ψ〉 = 0 for any state |ψ〉, then Ĵ i |ψ〉 = 0 for i = 1, 2, 3. Although
the components of Ĵ do not commute and so do not possess simultaneous eigenstates in general,
the case of a state with j = 0 is an exception, since it is a simultaneous eigenstate of all three
components of Ĵ with eigenvalues 0. With this in mind we denote the basis of states in the
subspace of the full Hilbert space with j = 0 by |j1j2j30〉, where the zero vector 0 indicates
the vanishing eigenvalues of Ĵ. These basis states are also eigenstates of the operators Ĵ2

ij , for

example, Ĵ2
12|j1j2j30〉 = j3(j3 + 1)|j1j2j30〉.
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When the phase of the state |j1j2j30〉 is chosen to agree with Wigner’s convention for the
phases of the 3j -symbols, we have(

j1 j2 j3

m1 m2 m3

)
= 〈j1j2j3m1m2m3|j1j2j30〉. (22)

In this manner we have expressed the 3j -symbol as a matrix element connecting the eigenstates
of two sets of observables, (Î 1, Î 2, Î 3, Ĵ 1z, Ĵ 2z, Ĵ 3z) on the left and (Î 1, Î 2, Î 3, Ĵ x, Ĵ y, Ĵ z)

on the right. Since the second set is noncommuting, we will require a generalization of (3) to
compute the semiclassical approximation to the 3j -symbols.

5. Classical mechanics of the Schwinger model

The classical mechanics of the Schwinger model must be well understood in order to carry out
a semiclassical analysis. A general reference on the classical mechanics of integrable systems
from the modern point of view is Cushman and Bates (1997), where harmonic oscillators in
particular are treated.

5.1. The 1j -model

We start with the 1j -model, defining two classical oscillators Hµ = (1/2)
(
x2

µ + p2
µ

)
and

H = ∑
µ Hµ, as in the quantum case. The classical configuration space is R

2 and the phase

space is R
4. We introduce complex coordinates on phase space zµ = (xµ + ipµ)/

√
2 and

z̄µ = (xµ − ipµ)/
√

2, where we use an overbar for complex conjugation. These are the Weyl
symbols of the operators aµ, a†

µ. The complex coordinates zµ, z̄µ allow us to identify the phase
space R

4 with C
2, that is, knowledge of z1 and z2 allows us to find all four real coordinates

(x1, x2, p1, p2), since z̄’s are complex conjugates of z’s. As we shall see, coordinates (z1, z2),

arranged as a two-component column vector, transform as a spinor under certain SU(2)

transformations. Variables zµ and iz̄µ are canonically conjugate (q’s and p’s, respectively), so
that the Poisson bracket of two functions f and g on phase space can be written as

{f, g} =
∑

µ

(
∂f

∂xµ

∂g

∂pµ

− ∂f

∂pµ

∂g

∂xµ

)

=
∑

µ

(
∂f

∂zµ

∂g

∂(iz̄µ)
− ∂f

∂(iz̄µ)

∂g

∂zµ

)
. (23)

The basic building blocks of the classical Schwinger model are the function

I = 1

2

∑
µ

z̄µzµ = 1

2

∑
µ

|zµ|2, (24)

and the three functions

Ji = 1

2

∑
µν

z̄µσ i
µνzν, (25)

for i = 1, 2, 3, which define a classical angular momentum vector. We also define
J2 = ∑

i J
2
i . These functions satisfy the identity J2 = I 2 and the Poisson bracket relations

{I, Ji} = 0, {Ji, Jj } = ∑
k εijkJk, {Ji, J2} = 0.

There are two groups of interest that act on the phase space R
4 or C

2. The first is U(1),

generated by I. Hamilton’s equations for I are
dzµ

dψ
= ∂I

∂(iz̄µ)
= − i

2
zµ,

d(iz̄µ)

dψ
= − ∂I

∂zµ

= −1

2
z̄µ, (26)
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where ψ is the parameter of the orbits. These have the solution

zµ(ψ) = exp(−iψ/2)zµ(0), z̄µ(ψ) = exp(iψ/2)z̄µ(0). (27)

Under the I-flow, the two-component spinor (z1, z2) just gets multiplied by an overall phase
exp(−iψ/2). Except for the special initial condition (z1, z2) = (0, 0) (the origin of phase space
R

4 or C
2), the orbits are circles with period 4π with respect to the variable ψ . Henceforth

when citing equations such as (26) or (27) we shall omit the second half, when it is simply the
complex conjugate of the first half.

We denote a value of I by j � 0. This is convenient notation, but in this classical context
j is a continuous variable not to be identified with the quantum number of any operator (see
section 10). Except for the origin j = 0, the level set I = j (or equivalently, J2 = j 2) is the
sphere S3, which is foliated into circles by the action (27). This foliation is precisely the Hopf
fibration (Frankel 1997, Nakahara 2003), yielding the quotient space S2 = S3/S1.

The second group acting on phase space is SU(2), whose action is generated by Ji.

Explicitly, if n is a unit vector and θ an angle, then the solutions of Hamilton’s equations

dzµ

dθ
= ∂(n · J)

∂(iz̄µ)
= − i

2

∑
ν

(n · σ)µνzν (28)

and its complex conjugate are

zµ(θ) =
∑

ν

u(n, θ)µνzν(0) (29)

and its complex conjugate. These are the obvious classical analogues of equations (19); note
that the period in θ is 4π. It is because of this SU(2) action that we say that coordinates
(z1, z2) form a spinor. This classical action of SU(2) can be understood as a subgroup of
the classical group of linear canonical transformations, Sp(4) (Littlejohn 1986); in general,
Sp(2N) possesses a subgroup Sp(2N) ∩ O(2N) that is isomorphic to U(N), which contains
the subgroup SU(N) (in this case, N = 2). When the symplectic matrices lying in the
SU(2) subgroup are expressed in the complex basis (zµ, iz̄µ), they block diagonalize with u
multiplying z’s and ū multiplying z̄’s.

Equation (25) defines a map (a projection) π : R
4 (or C

2) → R
3, where R

3 is ‘angular
momentum space’, the space with coordinates (J1, J2, J3). Here and below we use π to denote
this map or its generalization to the Nj -model. The map π maps a larger space onto a smaller
one, and so is not one-to-one. The inverse image of a point J of angular momentum space is a
set of spinors that differ by an overall phase. It is easy to see that the definition (25) does not
depend on the overall phase of the spinor. Thus, the inverse image is a circle, except in the
case J = 0 when it is a single point (the origin of phase space C

2 or R
4).

These circles are precisely the orbits of the I-flow (27). Any function f that is constant
on these circles projects onto a well-defined function on angular momentum space. But such
functions are those that Poisson commute with I, {f, I } = 0. This includes I itself as well
as the three Ji. We can write such a function as f (z1, z2, z̄1, z̄2) or f (J). Now if f and
g are any two such functions, then so is their Poisson bracket {f, g}, as follows from the
Jacobi identity, {{f, g}, I } = {f, {g, I }} + {g, {I, f }} = 0. Thus, this Poisson bracket can be
computed directly in angular momentum space without going back to the bracket (23); the
result is the Lie–Poisson bracket,

{f, g} = J ·
(

∂f

∂J
× ∂g

∂J

)
. (30)

Interpretations of these spaces may be given in terms of the theory of ‘reduction’ (Marsden
and Ratiu 1999). Angular momentum space is the Poisson manifold that results from Poisson
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reduction of the phase space R
4 under the U(1) action (27) generated by I. It is not by itself an

ordinary phase space (symplectic manifold), which would have an even dimensionality, but it
is foliated into symplectic submanifolds (the symplectic leaves). In this case, the symplectic
leaves are the 2-spheres in angular momentum space, that is, the level sets J2 = j 2, the images
under π of the 3-spheres I = j in R

4 or C
2. Canonical coordinates on a given 2-sphere

J2 = j 2 are (φ, Jz), a (q, p) pair, where Jz = j cos θ and where (θ, φ) are the usual spherical
angles in angular momentum space. Thus we have

dq ∧ dp = dφ ∧ d(j cos θ) = j sin θ dθ ∧ dφ = j d�, (31)

and the symplectic form on a given sphere is j d�, where d� is the element of solid angle.
This is not the geometrical solid angle in a Euclidean geometry on angular momentum space,
which would be j 2d�. Another interpretation of angular momentum space is that it is the
dual of the Lie algebra of SU(2), while π , given by (25), is the momentum map of the SU(2)

action (29).
We now have three spaces, the ‘large phase space’ R

4 or C
2, its image under π , ‘angular

momentum space’ R
3 and its symplectic leaves, the ‘small phase spaces’, the 2-spheres

J2 = j 2. Angular momentum space is useful for visualizing classical angular momentum
vectors, but by considering inverse projections under π the corresponding geometrical objects
in the large phase space can be constructed. Angular momentum space has been used since
the time of the old quantum theory for visualizing the classical limit of quantum angular
momentum operators; for example, one spoke of an angular momentum vector ‘precessing’
around the z-direction. In reality, the ‘precession’ defines a manifold of classical states in the
small phase space that is a level set of a complete set of commuting observables, that is, it is
an invariant torus of an integrable system (just a circle in the 1j -model, where the commuting
observables are I and Jz).

5.2. The Nj -model

We now consider the classical mechanics of the Nj -model, which is mostly a simple
generalization of the 1j -model. We have 2N classical oscillators Hrµ = (1/2)

(
x2

rµ + p2
rµ

)
;

the configuration space is (R2)N = R
2N and the ‘large’ phase space is (R4)N = R

4N or
(C2)N = C

2N . We define zrµ = (xrµ + iprµ)/
√

2, z̄rµ = (xrµ − iprµ)/
√

2, so a point in
phase space can be thought of as a collection of N 2-spinors, (zr1, zr2), r = 1, . . . , N. We
make the obvious definitions (classical versions of equations (8)–(12)),

Ir = 1

2

∑
µ

|zrµ|2, (32)

Jri = 1

2

∑
µν

z̄rµσ i
µνzrν, (33)

as well as J2
r = ∑

i J
2
ri , Ji = ∑

r Jri or J = ∑
r Jr and J2 = ∑

i J
2
i .

We denote a value of the functions Ir by jr � 0; for positive values jr > 0, r = 1, . . . , N,

the level set Ir = jr (or J2
r = j 2

r ) in the phase space (R4)N is S3 × · · · × S3 = (S3)N . The
flow generated by Ir for a specific value of r is just multiplication of the rth spinor (zr1, zr2)

by a phase factor exp(−iψr/2), as in (27); the other spinors are not affected. Thus, the N
commuting flows generated by all Ir ’s constitute a U(1)N = T N action on the large phase
space (T N is the N-torus).

Equation (33) defines the projection map π : (C2)N → (R3)N , the latter space being
‘angular momentum space’ for the Nj -model, with one copy of R

3 for each classical angular
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momentum vector Jr . In view of its importance, we write out the components of this map
explicitly:

Jrx = 1

2
(z̄r1zr2 + z̄r2zr1) = Re(z̄r1zr2), (34)

Jry = − i

2
(z̄r1zr2 − z̄r2zr1) = Im(z̄r1zr2), (35)

Jrz = 1

2
(|zr1|2 − |zr2|2). (36)

Points of angular momentum space can be visualized as N classical angular momentum vectors,
each living in its own angular momentum space or N such vectors all in the same three-
dimensional angular momentum space. The inverse image under π of a set of N nonvanishing
classical angular momentum vectors is an N-torus in the large phase space, generated by
taking any point in the inverse image (a collection of N 2-spinors), and multiplying them by N
independent, overall phase factors. We denote the angles on this torus by ψr, r = 1, . . . , N,

which are the evolution parameters corresponding to Ir , as in (27); thus their periods are 4π.

As in the 1j -model, angular momentum space (R3)N is a Poisson manifold, now with Poisson
bracket

{f, g} =
∑

r

Jr ·
(

∂f

∂Jr

× ∂g

∂Jr

)
. (37)

The symplectic leaves (the ‘small phase spaces’) are the spaces S2×· · ·×S2 = (S2)N obtained
by fixing the values of j1, . . . , jN , with canonical coordinates (φr, Jrz) on each sphere.

In the classical Nj -model any partial or total sum of the angular momenta Jr generates an
SU(2) action on the large phase space, generalizing equations (28) and (29) in the 1j -model,
in that the SU(2) matrix u is applied to all spinors (zr1, zr2) whose r values lie in the sum. For
example, the total J rotates all spinors.

These SU(2) actions on the large phase space project to SO(3) actions on angular
momentum space. Consider, for example, the SU(2) action generated by the total J. Along an
orbit in the large phase space generated by n · J, parameterized by θ , we can follow the value
of Jr , giving us Jr (θ), an orbit in the small phase space (the projection under π of the first
orbit). The latter orbit is

Jri(θ) =
∑

j

R(n, θ)ij Jrj (0), (38)

where R(n, θ) is the 3 × 3 rotation associated with u(n, θ) according to (21). This
is the classical analogue of (20). It follows from (33) and the spinor adjoint equation,
u†σ iu = ∑

j Rijσ
j , itself equivalent to (21). Thus, under the SU(2) action on the large phase

space generated by J, the individual vectors Jr rotate in their individual angular momentum
spaces by the corresponding 3 × 3 rotation. For example, Jz rotates all vectors Jr about the
z-axis. Because of the two-to-one relation between SU(2) and SO(3), when the orbit in the
large phase space goes around once (θ goes from 0 to 4π ), the angular momentum vectors go
around twice in their individual angular momentum spaces.

We may visualize this action as in figure 1, where A represents a point of angular
momentum space (a set of N classical angular momentum vectors Jr in the Nj -model). To
obtain the generic case we assume these vectors are linearly independent (in particular, none
of them vanishes). In the figure, T is the inverse image of A under π , an N-torus. Point a is
any specific point in the large phase space on this N-torus, to which the SU(2) rotation u(n, θ)

is applied for 0 � θ < 4π. That is, we treat a as initial conditions for the Hamiltonian flow
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T

π

C

D

a

a ′

A

Figure 1. The action of an SU(2) rotation about a fixed axis on a point of the large phase space
and its projection onto angular momentum space.

generated by n · J, with θ as the parameter. This generates the circle C in the large phase
space, which amounts to rotating all N spinors by the same u(n, θ). The projection of the
circle C is a circle D in angular momentum space (R3)N , that is, all classical vectors Jr rotate
about n by angle θ . However, when the circle C is covered once, circle D is covered twice.
This is because when θ = 2π, the spinor rotation u(n, θ) = −1, so all spinors in the large
phase space are just multiplied by −1. This is illustrated as point a′ in the figure, where all
spinors are −1 times their values at a. Since −1 is just a phase factor, both a and a′ project
onto the same point A in angular momentum space. These are the only two points on C that
project onto A; for θ not a multiple of 2π, the spinor rotation u(n, θ) is not a multiplication
by a phase factor.

Alternatively, we may apply the entire group SU(2) to the original point a (not just
rotations along a fixed axis). Then the manifold C is the orbit of the SU(2) action which is
diffeomorphic to SU(2). The point a′ is the image of a under u = −1, a specific element
in SU(2), and once again it projects onto the original point A in the small phase space. The
manifold D is the orbit of point A under the group SO(3). In the 1j -model, it is just a sphere
in angular momentum space (all vectors that can be reached from the original one by applying
all rotations), while in the Nj -model for N > 1D is generically diffeomorphic to SO(3) (it
is the set of all classical configurations of N angular momentum vectors that can be obtained
from the original one by applying rigid rotations).

6. The invariant jm-tori

In this section we continue with the classical point of view, examining the classical manifolds
corresponding to the left-hand side of the matrix element (22). For this exercise and the rest
of the paper we adopt a 3j -model (N = 3). The manifolds in question are the level sets of the
commuting functions Ir , Jrz, r = 1, 2, 3, or, equally well, of the functions Irµ = (1/2)|zrµ|2
for r = 1, 2, 3, µ = 1, 2, since Ir = Ir1 + Ir2 and Jrz = Ir1 − Ir2. We denote the level sets by
Ir = jr , Jrz = mr for contour values jr , mr, r = 1, 2, 3, or, equivalently, by

Ir1 = 1
2 (jr + mr), Ir2 = 1

2 (jr − mr). (39)
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θrµ/2

xrµ

prµ

Figure 2. Harmonic oscillator motion in the xrµ–prµ plane, generated by Irµ. The definition of
angle θrµ is shown.

In spite of the notation, jr and mr take on continuous values and are not necessarily the
eigenvalues of any quantum operators. Since Irµ are all nonnegative, we have

jr � 0, −jr � mr � jr , (40)

the classical analogues of the usual inequalities in quantum mechanics.
Since each of the six Irµ is a harmonic oscillator (times 1/2), the level set of Irµ’s is an

invariant torus of a collection of harmonic oscillators. Generically (for nonzero amplitude in
each oscillator, that is, when none of the quantities jr ± mr vanishes) this is a 6-torus, upon
which the coordinates may be taken to be the six angles θrµ, the variables of evolution of
Irµ. The Hamiltonian flow generated by Irµ for a specific value of r and µ just multiplies
zrµ for the same values of r and µ by exp(−iθrµ/2), while leaving all other z’s unaffected.
This is not an overall spinor rotation since the other half of the spinor containing the given
zrµ is not affected. If viewed in the Cartesian xrµ–prµ phase plane, this flow is a clockwise
rotation by angle θrµ/2, as illustrated in figure 2. The period of the angles θrµ is 4π. We
agree to measure the angles θrµ from the positive xrµ axis, as in the figure, where zrµ is
real and positive (or zero); this is a specific convention for a set of canonical coordinates
(θrµ, Irµ), r = 1, 2, 3, µ = 1, 2, on the large phase space. The volume of the 6-torus with
respect to the measure dθ11 ∧ · · · ∧ dθ32 is (4π)6.

These tori are also the orbits of the flows generated by the observables Ir , Jrz. We denote
the evolution variables of Ir and Jrz by ψr (as above) and φr, respectively. Each Jrz generates
an SU(2) rotation about the z-axis on the spinor with the given value of r; thus each of the six
angles (ψr, φr) has period 4π. However, when we allow all six angles (ψr, φr) to range from
0 to 4π, the torus is actually covered eight times. This can be seen from figure 1: a rotation
by 2π in one of φ’s and one of ψ’s returns us to the initial point (the path is a to a′ along C
in figure 1, then a′ to a along T.) Alternatively, we may consider the canonical transformation
(θrµ; Irµ) → (ψr, φr ; Ir , Jrz), generated by

F2(θr1, θr2, Ir , Jrz) = 1
2 [θr1(Ir + Jrz) + θr2(Ir − Jrz)], (41)

which generates Ir = Ir1 + Ir2, Jrz = Ir1 − Ir2 and

ψr = 1
2 (θr1 + θr2), φr = 1

2 (θr1 − θr2), (42)
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Jz

Jx Jy

J1

J2

J3

Figure 3. The quantum state |j1j2j3m1m2m3〉 corresponds classically to a 3-torus in the small
phase space S2 × S2 × S2, which can be visualized as three J vectors lying on three cones with
fixed values of Jz. The three azimuthal angles are independent.

so that the Jacobian in the angles is (1/2)3 = 1/8. To cover the torus precisely once we may
let ψr ’s range from 0 to 4π and φr ’s from 0 to 2π or vice versa; thus the volume of the torus
with respect to dψ1 ∧ dψ2 ∧ dψ3 ∧ dφ1 ∧ dφ2 ∧ dφ3 is

Vjm = (2π)3(4π)3. (43)

The angles φr defined in this way on the large phase space can be projected onto the
small phase space, whereupon they coincide with the usual azimuthal spherical angles in the
individual angular momentum spaces. It is clear this must be so to within an additive constant,
since the Jrz-flow is just an SO(3) rotation about the z-axis in the rth angular momentum space,
but by our conventions even the additive constant comes out right. To see this we note first of
all that φr for a given r is constant along the Is-flows for all s, since the variables in question are
members of a canonical coordinate system on the large phase space and satisfy {φr, Is} = 0.

Thus, φr, defined in the large phase space, projects onto a meaningful function in angular
momentum space. Next, to compute the value of φr for a specific angular momentum vector Jr ,

it suffices to take any point in the 3-torus that is the inverse image, that is, any value of the angles
ψs may be chosen. For simplicity we take ψr = 0, which implies θr1 = φr and θr2 = −φr .

This in turn implies zr1 = |zr1| exp(−iφr/2), zr2 = |zr2| exp(iφr/2). But by equations (34)
and (35), these imply Jrx = Jr⊥ cos φr, Jry = Jr⊥ sin φr, where Jr⊥ = |zr1||zr2|.

We shall henceforth call the level set Ir = jr , Jrz = mr the ‘jm-torus’. This torus can
be projected onto angular momentum space; we consider the generic case when jr ± mr �= 0
for all r, in which case the jm-torus is a 6-torus. In this case, its image in angular momentum
space is a 3-torus, which, since it is a surface on which Ir = jr , is also a submanifold of
the small phase space. This is because the three ψr angles just change the overall phases
of the three spinors, without changing their image under π , so the three coordinates on the
projected 3-torus are the angles φr . The 3-torus in angular momentum space can be visualized
as three classical vectors Jr in a single angular momentum space, with specified values of
mr = Jrz, ‘precessing’ about the z-axis, see figure 3. This is an example of how we shall
visualize manifolds in the large phase space: the jm-torus, a six-dimensional manifold in
the large phase space (itself with 12 dimensions), is visualized as three angular momentum
vectors in three-dimensional space, as in figure 3, defining a 3-torus by varying their azimuthal
angles independently, and each point of this 3-torus is associated with another 3-torus, the
inverse projection under π of the given point, which consists of independently changing the
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overall phases of the three spinors. The six-dimensional jm-torus is thus conceived of as the
Cartesian product T 3 × T 3 (it is actually a trivial bundle).

7. The Wigner manifold

Now we turn to the right-hand side of the matrix element (22), containing the state |j1j2j30〉.
This state suggests that we examine the classical manifold upon which Ir have definite values,
say, Ir = jr , and upon which J2 = 0. Again, we do not necessarily identify jr with any
quantum numbers, but it is convenient in the following to assume that none of jr ’s vanishes.

7.1. Properties of the Wigner manifold

Usually, the dimensionality of a manifold can be guessed by counting the constraints that
define it, for example, we expect the manifold in the large (12-dimensional) phase space
upon which Ir = jr , J2

12 = j 2
12, Jz = m and J2 = j 2, for given contour values, to be six-

dimensional (six constraints on 12 variables). Indeed, for most values of j this is correct, and
the manifold in question is a 6-torus (by the Liouville–Arnold theorem, for certain ranges of
the contour values). These are the invariant tori that would be involved in the semiclassical
treatment of the addition of three angular momenta, producing a nonzero result (the case
j �= 0). But this naive dimension count only works when the differentials of the functions
in question are linearly independent (in particular, nonvanishing) on the manifold. This
condition breaks down when J2 = j 2 = 0, since J2 = 0 and J = 0 imply one another,
and d(J2) = 2J · dJ = 0. In fact, just the four conditions Ir = jr > 0, J2 = j 2 = 0
define a six-dimensional manifold in the 12-dimensional large phase space (for certain ranges
of jr ). To see this we note first that since J2 = 0 implies Ji = 0, i = 1, 2, 3, and Jz = m = 0
in particular, the Jz constraint is not independent; neither is the J2

12 = j 2
12 constraint, since

when J = 0, j12 = j3. This is just as in the quantum case. In fact, the manifold Ir = jr , J2 = 0
is characterized equivalently but better by Ir = jr , J = 0, since the six differentials dIr and
dJi are linearly independent of it. (Although Ji vanish on the manifold in question, their
differentials do not.) Thus, the naive count of dimensions works with the set Ir , Ji .

We shall call the manifold Ir = jr , J = 0 in the large phase space the ‘Wigner manifold’,
because it corresponds to the rotationally invariant state |j1j2j30〉 introduced by Wigner in his
definition of the 3j -symbols. The dimensionality of this manifold (six, in the appropriate
ranges of jr ’s) is the same as that of the invariant tori of any integrable system of six
degrees of freedom, and indeed the same as that of the nearby invariant tori in phase space
corresponding to the level sets of the functions (I1, I2, I3, J2

12, Jz, J2) when j > 0. The
Wigner manifold, however, is not a torus. This is not a contradiction of the Liouville–Arnold
theorem, which requires that the classical observables making up the level set should Poisson
commute. In the case of the Wigner manifold, we do have {Ir , Is} = 0 and {Ir , Ji} = 0,

but {Ji, Jj } = ∑
k εijkJk. The Hamiltonian vector fields corresponding to the functions Ir , Ji

are linearly independent of the Wigner manifold, but the three Ji-flows do not commute
(two Hamiltonian flows commute if and only if their Poisson bracket is a constant). The
Wigner manifold is, however, an orbit of the collective action of these Hamiltonian flows (any
point can be reached from any other point by following the flows in some order). These facts,
information about the topology of the Wigner manifold, and the required ranges on the contour
values jr will be clarified momentarily.

The Wigner manifold is also a Lagrangian manifold, like the invariant tori of an integrable
system. This means that the integral of p dx along the manifold is locally independent of
path, so an action function S(x,A) can be defined. This function in turn is the solution of the
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Jz

Jx

J3

J1

J2

η2 η1

η3

Figure 4. If j1, j2 and j3 satisfy the triangle inequalities, then they define a triangle that is unique
apart from its orientation. A standard orientation places the triangle in the x–z plane with sides
J1, J2, J3 oriented as shown. The angle opposite Jr is ηr .

simultaneous Hamilton–Jacobi equations for the observables (I1, I2, I3, Jx, Jy, Jz), call them
Ai, i = 1, . . . , 6 for short, of which the Wigner manifold is the level set.

To prove that the Wigner manifold is Lagrangian, we note that the differentials dAi

are linearly independent, so the vector fields Xi are too, and span the tangent space to the
Wigner manifold at each point. Evaluating the symplectic form on these vector fields, we have
ω(Xi,Xj ) = −{Ai,Aj }. These Poisson brackets all vanish except for {Ji, Jj }; the latter are
nonzero at most points in phase space, but on the Wigner manifold where J = 0 these also
vanish. Thus the symplectic form restricted to the Wigner manifold vanishes, the condition
that the Wigner manifold be Lagrangian.

To visualize the Wigner manifold we work our way up from angular momentum space
to the large phase space. First we attempt to construct three angular momentum vectors of
given positive lengths j1, j2, j3 that add up to the zero vector. This can be done if and only
if jr satisfy the triangle inequalities, whereupon the values of jr ’s (the lengths of the sides)
specify a triangle that is unique to within orientation. If we choose a standard or reference
orientation for the triangle, then the three desired vectors are the vectors running along its
sides. Let us therefore assume that the triangle inequalities are satisfied, and let us choose
a standard orientation for the triangle by placing the J3 along the z-axis, J1 in the x–z plane
with J1x > 0, and J2 in the x–z plane with J2x < 0, as illustrated in figure 4. Given any two
triangles with the same (positive) sides, there exists a unique rotation that maps one into the
other; this fact and others regarding triangles are discussed in the context of the three-body
problem by Littlejohn and Reinsch (1995). In the present context this means that all classical
configurations of three classical angular momentum vectors of fixed lengths that add up to the
zero vector are related to any one such configuration, such as the one shown in figure 4, by
a unique rotation. Thus the manifold of such classical configurations in angular momentum
space R

3 × R
3 × R

3 or in the small phase space S2 × S2 × S2 is diffeomorphic to SO(3).

The Wigner manifold in the large phase space is now the inverse projection under π of
this SO(3) manifold in angular momentum space. Since the inverse image of any given point
of angular momentum space is a 3-torus in the large phase space (obtained by varying the
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A

π
a b

a′ b′SU(2)

SO(3)

TA TB

B

Figure 5. A schematic illustration showing how the Wigner manifold in the large phase space is
the inverse image under π of a set of triangles formed from three angular momentum vectors with
vanishing sum, all related by rigid rotations.

overall phases of the three spinors), the Wigner manifold is a 3-torus bundle over SO(3) and
is six-dimensional. The bundle is nontrivial.

The Wigner manifold may also be visualized with the help of figure 5, an elaboration of
figure 1. It is assumed that the three j ’s are positive and satisfy the triangle inequality. The
lower part of this figure refers to angular momentum space, while the upper part refers to the
large phase space. Projection π maps between the two spaces. Point A in angular momentum
space is a state of three classical angular momenta of the given lengths jr whose vector sum is
zero (that is, the angular momenta define a triangle), in a definite orientation. To be specific,
let us say that A is the configuration shown in figure 4. By applying all SO(3) rotations to A

we generate all orientations of the triangle, of which B in the figure is one. The lower circle
in the figure represents the manifold of such configurations, diffeomorphic to SO(3).

The inverse image of any point on this manifold under π is a 3-torus in the large phase
space. The 3-tori above points A and B are indicated schematically as lines TA and TB in
the figure. Let a be some point on TA. To be specific, if A is the configuration of angular
momentum vectors shown in figure 4 and the stated conditions on jr hold, then none of the
three vectors lies on the negative z-axis. This means that for any point on TA, |zr1|2 is never
zero, since by equations (32) and (36) we have

|zr1|2 = jr + Jrz, |zr2|2 = jr − Jrz, (44)

for r = 1, 2, 3. Thus by adjusting the overall phases of the three spinors (zr1, zr2), we can
make zr1 real and positive for all r = 1, 2, 3. Let this be the point a in figure 5.

It is notationally tempting to write mr for the value of Jrz, but we shall not do this in the
context of the Wigner manifold, instead reserving the symbol mr for the contour value of Jrz

on the jm-torus.
Now we apply spinor rotations to point a, that is, simultaneous multiplication of all three

spinors (zr1, zr2) by the same element of SU(2). The orbit thereby generated is a manifold
diffeomorphic to SU(2), as indicated in figure 5. The projection of this manifold onto angular
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momentum space is the surface SO(3) shown in the figure, that is, all orientations of the
triangle are generated. For example, in the 3-torus TB over the angular momentum triangle
with orientation B, there is a point b that can be reached from the given point a by some spinor
rotation. The spinor rotation in question is one of the two that projects onto the SO(3) rotation
that maps A into B, according to (21). The orbit of reference point a under the SU(2) action
therefore passes through the 3-tori over every possible orientation of the triangle. In fact, it
passes through each 3-torus twice, since the SU(2) rotation u = −1 is just a phase factor.
This is the meaning of points a′ and b′ in the figure, which are related to points a and b by
multiplying all three spinors by −1.

Thus any point on the Wigner manifold can be reached from the reference point a by
applying some SU(2) rotation, and then adjusting the overall phases of the three spinors
(zr1, zr2). The first step is equivalent to following along the Hamiltonian flows in the large
phase space generated by the three Ji (this creates the SU(2) rotation), while the second is
equivalent to following the Hamiltonian flows generated by the three Ir (this changes the
overall phases of the three spinors). By letting the rotations range over all of SU(2) and the
three angles ψr range from 0 to 4π, the Wigner manifold is covered twice. Thus we obtain
coordinates on the Wigner manifold (α, β, γ, ψ1, ψ2, ψ3) (the first three of which are Euler
angles on SU(2)).

Solving the simultaneous amplitude transport equations for the six observables
Ir , Ji, r, i = 1, 2, 3, requires us to find an invariant measure on the Wigner manifold, that
is, one invariant under all of the corresponding Hamiltonian flows. Details are presented in
section 11; for now we just guess that this measure is the Haar measure on the group SU(2)

times the obvious measure on the 3-tori generated by Ir , namely,

sin β dα ∧ dβ ∧ dγ ∧ dψ1 ∧ dψ2 ∧ dψ3, (45)

where (α, β, γ ) are Euler angles on SU(2). The integral of this measure over the Wigner
manifold is

VW = 1
2 (16π2)(4π)3 = 29π5, (46)

where 1/2 compensates for the fact that the Wigner manifold is covered twice when the Euler
angles run over SU(2) and each ψr runs from 0 to 4π.

7.2. Angles related to the shape of the triangle

Figure 4 defines the angles ηr as the angles opposite vectors Jr . Under our assumptions, these
angles lie in the range 0 � ηr � π. By projecting all three vectors onto the directions parallel
and orthogonal to each of the vectors in turn, we obtain a series of identities,

j1 cos η2 + j2 cos η1 + j3 = 0, (47)

j1 sin η2 − j2 sin η1 = 0, (48)

and four more obtained by cycling indices 1, 2, 3. These allow us to solve for the cosines of
the angles ηr,

cos η1 = j 2
1 − j 2

2 − j 2
3

2j2j3
, (49)

and cyclic permutations, which in view of the stated ranges on the angles allows all three
angles ηr to be uniquely determined as functions of (j1, j2, j3). We shall regard angles ηr as
convenient substitutions for these definite functions of the lengths of the angular momentum
vectors.



5656 V Aquilanti et al

For the stated ranges on ηr, the sines of the angles are nonnegative and are related to the
area � of the triangle, as follows:

� = 1
2 |J1 × J2| = 1

2j1j2 sin η3

= 1
4

√
(j1 + j2 + j3)(−j1 + j2 + j3)(j1 − j2 + j3)(j1 + j2 − j3), (50)

and cyclic permutations. Some authors define � as the final square root (without the 1/4).

8. Intersections of manifolds

The stationary phase points of the matrix element (22) are the intersections of the jm-manifold
and the Wigner manifold in the large phase space. Thus we must use a version of (5) for the
matrix element, rather than (3). In this section we study the intersections of the manifolds,
continuing with a classical picture.

If the jm-torus and the Wigner manifold in the large phase space have a common point of
intersection, then the projections of these two manifolds onto angular momentum space must
have a common point of intersection. The converse is also true: if the projections have a point
in common, then the inverse image of this point under π , a 3-torus which is the orbit of the
three Ir -flows, must contain two points, one of which belongs to the jm-torus and the other
to the Wigner manifold. But the 3-torus is the orbit of the Ir -flows, and these flows confine
one to both the jm-torus and the Wigner manifold. Therefore, the entire 3-torus is common to
both the jm-torus and the Wigner manifold. Therefore, to find intersections of the jm-torus
and the Wigner manifold, we may first find the intersections of their projections under π .

The jm-torus projects onto a set of configurations of three angular momenta with given
lengths and fixed values of mr = Jrz, with arbitrary azimuthal angles, while the Wigner
manifold projects onto configurations with the same lengths in which the vector sum of the
angular momenta vanishes, forming a triangle, with arbitrary orientation. Therefore, to find
a common point between these two sets of classical angular momenta configurations, we can
either adjust the azimuthal angles of the angular momenta with given m values until a triangle
is formed (total J = 0) or we can rotate a triangle from a given, reference orientation until the
m values are the desired ones. We choose the latter procedure.

Our reference orientation of the triangle is shown in figure 4, which is indicated
schematically as the point A in figure 5. We must rotate this reference orientation to obtain
some prescribed values of mr. These values satisfy relations (40), so in particular |m3| � j3.

Thus by rotating the triangle in the reference orientation about the y-axis by a unique angle
β, 0 � β � π, defined by

m3 = j3 cos β, (51)

we guarantee that J3 has the right projection. The result of this rotation is shown in figure 6,
for a certain negative value of m3.

Next we rotate the triangle about the axis J3 by an angle γ , which does not change J3

or its projection, but which rotates J1 and J2 in a cone, as illustrated in figure 7. We wish to
choose the angle γ so that J2 has the desired projection m2 onto the z-axis. In figure 7, J1

is not shown, but J2 rotates about the J3 direction, its tip sweeping out circle C3. The circle
Cz in the figure is swept out by a vector of length j2 and projection m2 onto the z-axis (this
vector is not shown). Circles C3 and Cz intersect in two points Q and Q′ in the figure, which
represent two orientations of the triangle that have the correct values of both m3 and m2. Now
the orientation of the triangle is fixed, so there is no more freedom to rotate J1. In this final
orientation the value of J1z is −J2z −J3z = −m2 −m3, since J = 0 for the triangle. Either this
value of J1z equals the value of m1 associated with the jm-torus or it does not. If it does not,
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Jz

Jx

J3

J1

J2

β

m3

Figure 6. By rotating the reference orientation of the triangle about the y-axis, we can give J3 the
desired projection m3 onto the z-axis.

Jz

Jx

Jy

J3

J2

Q

Q′

Cz

C3

γ

Figure 7. Once vector J3 has the desired projection m3, we rotate the triangle by angle γ about
the axis J3 to make J2 have its desired projection m2. This cannot always be done for real angles
γ , but when it can be done there are generically two angles that work, illustrated by points Q and
Q′ in the figure.

then there are no intersections between the jm-torus and the Wigner manifold. This is just the
classical expression of the condition that the matrix element (22) vanishes unless

∑
r mr = 0.

Henceforth we assume that the mr values for the jm-torus do satisfy this condition.
In this case we may solve for the values of γ associated with points Q and Q′ in figure 7.

Writing R(n, θ) for a three-dimensional rotation by angle θ about axis n, we have applied the
rotation

R(j3, γ )R(y, β) = R(y, β)R(z, γ ) (52)
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to the reference orientation in figure 4, where j3 is the unit vector in the direction J3 shown in
figure 6 (after the first rotation). In the reference orientation the vectors are

J1 = j1


sin η2

0
cos η2


 , J2 = j2


− sin η1

0
cos η1


 , J3 = j3


0

0
1


 . (53)

After applying rotation (52) these become

J1 = j1


 cos β cos γ sin η2 + sin β cos η2

sin γ sin η2

− sin β cos γ sin η2 + cos β cos η2


 ,

J2 = j2


− cos β cos γ sin η1 + sin β cos η1

− sin γ sin η1

sin β cos γ sin η1 + cos β cos η1


 ,

J3 = j3


sin β

0
cos β


 .

(54)

We have already solved for β in (51); we may now solve for γ by demanding either J1z = m1

or J2z = m2. These lead to

cos γ = j1 cos β cos η2 − m1

j1 sin β sin η2
= m2 − j2 cos β cos η1

j2 sin β sin η1
. (55)

These two conditions are equivalent (under the assumption
∑

r mr = 0), as follows from the
identities (47)–(49). If the common value of the two expressions on the right-hand side of
(55) lies in the range (−1, +1), then there are two real angles γ satisfying (55), corresponding
to the two points Q and Q′ in figure 7. In this case the two manifolds have real intersections,
and we are in the classically allowed region for the 3j -symbol. We let γ represent the root
(the ‘principal branch’) in the range [0, π ], and −γ the root (the ‘secondary branch’) in the
range [−π, 0]. Note that sin γ � 0 (�0) on the principal (secondary) branch. If the right-hand
side of (55) lies outside the range [−1, 1], then there are two complex roots for γ . In this
case the two manifolds have no real intersections, but they do have complex ones. Only one of
the two complex roots is picked up by the contour of integration used in obtaining the matrix
element (3) or (5), resulting in an exponentially decaying expression for the matrix element.
In this case we are in the classically forbidden region of the 3j -symbol. In the following for
simplicity we assume we are in the classically allowed region.

The points Q and Q′ in figure 7 represent values of J2 in a single angular momentum
space R

3. Taken with the values of J1 and J3, they specify points, call them P and P ′, in the
combined angular momentum space R

3 ×R
3 ×R

3 that lie on the intersection of the projections
of the jm-torus and the Wigner manifold onto that space. Then by applying rotations about
the z-axis to P and P ′, we generate a pair of circles in angular momentum space. Such
rotations change neither the z-projections of the three vectors nor their vector sum (zero). This
is obviously a reflection of the fact that the operator Jz defining the state on the right-hand
side of (22) is a function of the operators (J1z, J2z, J3z) defining the state on the left. Thus, the
projections of the jm-manifold and Wigner manifold under π intersect generically in a pair
of circles.

Thus, the intersection of the jm-torus and the Wigner manifold in the large phase space
is the inverse image of this pair of circles under π , generically a pair of 3-torus bundles over a
circle. Since the Ir -flows and the Jz-flow commute, these bundles are trivial, in fact each is a
4-torus, on which coordinates are (ψ1, ψ2, ψ3, φ), where φ is the angle of evolution along the
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Jz-flow. The volume of either one of the 4-tori with respect to the measure dψ1 ∧dψ2 ∧dψ3 ∧
dφ is

VI = 1
2 (4π)4, (56)

the factor of 1/2 being explained by figure 1.
The jm-torus and the Wigner manifold, both six dimensional, intersect in a 4-torus

because the lists of functions defining the two manifolds, (I1, I2, I3, J1z, J2z, J3z) and
(I1, I2, I3, Jx, Jy, Jz), have three functions in common while Jz in the second list is a function
of (J1z, J2z, J3z) in the first list. Below we will transform the functions to make both lists have
explicitly four variables in common (see equation (97)).

9. Action integrals

Action integrals on the jm-torus and the Wigner manifold are needed for the phases in
expressions such as (5). We only need the action function at some point on the intersection
between the two manifolds, which gives us a lot of choice since that intersection is a 4-torus.
We continue with a classical picture in this section.

9.1. Choosing reference points

Action integrals are defined relative to some initial or reference point on each manifold. For
the jm-torus, a convenient point is the one where θrµ = 0, r = 1, 2, 3, µ = 1, 2, that is, the
point where each zrµ is real and nonnegative, as explained in section 6. According to (39), the
spinors at this reference point are given explicitly by(

zr1

zr2

)
=

(√
jr + mr√
jr − mr

)
. (57)

The projection of this point onto angular momentum space is a set of vectors Jr , r = 1, 2, 3,

of given lengths jr that lie in the x–z plane, with Jrz = mr and Jx � 0, as shown by (34)–(36).
Such vectors are illustrated in figure 3.

As for the Wigner manifold, it is convenient to take the reference point to be point a in
figure 5, which is discussed in section 7. This point projects onto the standard orientation
of the triangle, point A in figure 5, where the angular momentum vectors have the values
shown in (53). At the point a, zr1 is real and positive for all r, as explained in section 7. For
example, for r = 1 this assumption combined with (44) implies z11 = √

j1 + J1z, which by
(53) becomes z11 = √

j1(1 + cos η2) = √
2j1 cos η2/2. Then (35) and J1y = 0 imply that z12

is purely real, and (34) allows us to solve for z12 in terms of J1x, given by (53), producing
finally z12 = √

2j1 sin η2. Proceeding similarly with the other two spinors r = 2, 3, we obtain
the three spinors at the reference point a on the Wigner manifold,(

z11

z12

)
=

√
2j1

(
cos η2/2
sin η2/2

)
,

(
z21

z22

)
=

√
2j2

(
cos η1/2

− sin η1/2

)
,

(
z31

z32

)
=

√
2j3

(
1
0

)
.

(58)

Now to obtain a point common to both the jm-torus and the Wigner manifold, we apply
the spinor rotation

u(y, β)u(z, γ ) =
(

e−iγ /2 cos β/2 −eiγ /2 sin β/2
e−iγ /2 sin β/2 eiγ /2 cos β/2

)
(59)

to the reference spinors (zr1, zr2), r = 1, 2, 3, in (58), where Euler angles β and γ are defined
by (51) and (55). We obtain either the principal branch or the secondary one by taking
γ � 0 or γ � 0, respectively. The spinor rotation (59) induces the 3 × 3 rotation on the
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angular momentum vectors shown in (52). Thus we obtain the spinors at the common point
of intersection between the jm-torus and the Wigner manifold,

(
z11

z12

)
=

√
2j1

(
e−iγ /2 cos β/2 cos η2/2 − eiγ /2 sin β/2 sin η2/2

e−iγ /2 sin β/2 cos η2/2 + eiγ /2 cos β/2 sin η2/2

)
, (60)

(
z21

z22

)
=

√
2j2

(
e−iγ /2 cos β/2 cos η1/2 + eiγ /2 sin β/2 sin η1/2

e−iγ /2 sin β/2 cos η1/2 − eiγ /2 cos β/2 sin η1/2

)
, (61)

(
z31

z32

)
= e−iγ /2

√
2j3

(
cos β/2
sin β/2

)
. (62)

One can easily check using (34)–(36) that these spinors project onto the angular momentum
vectors in (54).

9.2. Computing the actions

In computing action integrals we use the identity,∑
rµ

prµ dxrµ = i

2

∑
rµ

(z̄rµ dzrµ − zrµ dz̄rµ) +
1

2
d
∑
rµ

xrµprµ. (63)

The integral of the left-hand side is the usual action one would need for wavefunctions
ψ(x11, . . . , x32), but it can be replaced by the integral of the first differential form on the right,
for the following reason. First, the integral of the exact differential on the right contributes the
difference in the function (1/2)

∑
rµ xrµprµ between the initial and final points. But the final

point is the common point of intersection between the jm-torus and the Wigner manifold, so
this contribution cancels when we subtract actions as in (5). As for the initial points on the
two manifolds, these have been chosen (see equations (57) and (58)) so that all zrµ are purely
real or prµ = 0. Thus the function in question vanishes at the initial points. As for the integral
of the first term on the right-hand side of (63), it can be written as

S = Im
∫ ∑

rµ

zrµ dz̄rµ. (64)

For the action on the jm-torus between initial point (57) and final point (60)–(62), we
follow a path consisting of flows of the functions Irµ = (1/2)|zrµ|2 taken one at a time by
angles θrµ. Along the Irµ-flow we have dz̄rµ/dθrµ = (i/2)z̄rµ, so the contribution to S is

Im
∫ θrµ

0

i

2
|zrµ|2dθrµ = Irµθrµ, (65)

since Irµ is constant along its own flow and since θrµ = 0 at the reference point. Thus the
total action between initial and final points on the jm-torus is

Sjm =
∑
rµ

Irµθrµ. (66)

Under the canonical transformation (41) this becomes

Sjm =
∑

r

(Irψr + Jrzφr) =
∑

r

(jrψr + mrφr), (67)

where in the final form we replace Ir and Jrz by their values on a given jm-torus.
The angles θrµ or (ψr, φr) are the coordinates of the final point specified by

equations (60)–(62). The solutions of Hamilton’s equations for the Ir -flow can be written
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as zrµ(θrµ) = zrµ(0) exp(−iθrµ/2) (see figure 2) where the initial conditions are real and
nonnegative, so we have θrµ = 2 arg z̄rµ. Combining this and (42), we can write the action on
the jm-torus as

Sjm = 2
∑
rµ

Irµ arg z̄rµ =
∑

r

jr arg(z̄r1z̄r2) +
∑

r

mr arg(z̄r1zr2). (68)

Using equations (60)–(62), this can be written as

Sjm = j3γ + j1 arg(cos β sin η2 + sin β cos γ cos η2 + i sin β sin γ )

+ j2 arg(− cos β sin η1 + sin β cos γ cos η1 + i sin β sin γ )

+ m1 arg(sin β cos η2 + cos β cos γ sin η2 + i sin γ sin η2)

+ m2 arg(sin β cos η1 − cos β cos γ sin η1 − i sin γ sin η1). (69)

Here we have used the rule arg(ab) = arg a + arg b, which is only valid for certain
choices of branch of the arg function. A more careful analysis shows that (69) is the
correct action along a certain path from the initial to final point (the principal branch) on
the jm-torus if the range of the arg function is taken to be [−π, π). (The path is defined by
γ � θ11, θ22 � 2π,−γ � θ12, θ21 � γ, that is, one integrates from 0 to these final θ values.)
In particular, this means that ψ1, ψ2, ψ3, φ1 all lie in [0, π ], while φ2 lies in [−π, 0]. These
ranges on angles φ1, φ2 are also evident from figure 7. Similarly, for the secondary branch
(−π � γ � 0, sin γ � 0) there exists a path such that with the same range on the arg function
(69) is still correct. With these understandings, the values of Sjm on the two branches differ
by a sign. We shall henceforth write Sjm (−Sjm) for the principal (secondary) branch.

Equation (66) can also be written in terms of cos−1 functions. We note that arg(z̄11z̄12) =
cos−1[Re(z̄11z̄12)/|z11z12|] and that |z11z12| =

√
j 2

1 − m2
1, etc. We can also use (55) to

eliminate cos γ. For the principal branch (γ � 0) this gives

Sjm = j1 cos−1

(
j1 cos β − m1 cos η2

sin η2J1⊥

)
+ j2 cos−1

(
m2 cos η1 − j2 cos β

sin η1J2⊥

)

+ j3 cos−1

(
j1 cos β cos η2 − m1

j1 sin β sin η2

)
+ m1 cos−1

(
j1 cos η2 − m1 cos β

sin βJ1⊥

)

−m2 cos−1

(
j2 cos η1 − m2 cos β

sin βJ2⊥

)
, (70)

where

Jr⊥ =
√

j 2
r − m2

r , (71)

and where the range of the cos−1 function is [0, π ]. Finally, by using equations (49) and (50)
these can be written explicitly in terms of the parameters jr , mr . The result has the form of
(67), where

ψ1 = cos−1

(
j 2

1 (m3 − m2) + m1
(
j 2

3 − j 2
2

)
4�J1⊥

)
, (72)

and cyclic permutations of indices, and where

φ1 = cos−1

(
j 2

2 − j 2
3 − j 2

1 − 2m1m3

2J1⊥J3⊥

)
, φ2 = − cos−1

(
j 2

1 − j 2
3 − j 2

2 − 2m2m3

2J2⊥J3⊥

)
,

(73)

and where φ3 = 0.
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Now we consider the action on the Wigner manifold between the initial point (58) and
the final point (60)–(62). The path between these points is made up of the product of rotations
(59), so we consider the action integral (64) along a rotation by angle θ generated by n · J.

Hamilton’s equations (see equation (28)) are dz̄rµ/dθ = (i/2)
∑

ν z̄rν(n · σ)νµ, so by (64) we
have

S = Im
∫ θ

0

i

2

∑
rµν

z̄rν(n · σ)νµzrµ dθ =
∫ θ

0
(n · J) dθ = (n · J)θ = 0, (74)

where we use (33), the fact that n · J is constant along its own flow, and the fact that J = 0 on
the Wigner manifold. The rotational action vanishes.

Thus the phase of the matrix element (22) is determined entirely by the action integral
along the jm-torus, that is, to within a sign it is given by equations (66)–(73). This is the
phase function determined previously by Ponzano and Regge, Miller, and others, and we see
that it is essentially a simple combination of the phases of the Schwinger oscillators. We have,
however, determined this phase function entirely within a classical model, that is, without
imposing any quantization conditions on the manifolds.

10. Bohr–Sommerfeld quantization

We do not need Bohr–Sommerfeld approximations to the eigenvalues of the operators involved
in the 3j -symbols because those eigenvalues are known exactly. We must, however, quantize
the jm-torus and the Wigner manifold, to obtain the wavefunctions whose scalar product
is the 3j -symbol. We also need the Bohr–Sommerfeld rules to make the connection between
the contour values for various classical functions and the standard quantum numbers of the
associated operators.

To quantize a Lagrangian manifold we must first find the generators of the fundamental
or first homotopy group of the manifold, that is, a set of closed contours in terms of which all
closed contours can be generated by concatening curves. In the following we shall call these
generators ‘basis contours’, although technically the fundamental group, even when Abelian,
is a group and not a vector space. For example, in the familiar case of the invariant n-tori of
integrable systems of n degrees of freedom, the fundamental group is Z

n, that is, an arbitrary
closed contour is expressed as a ‘linear combination’ of the n basis contours with integer
coefficients. The n basis contours themselves go around the torus once in the n different
directions.

After finding the basis contours, we compute the total phase associated with each of them,
the sum of an action, the integral of p dq around the contour and a Maslov phase, which is
−π/2 times the Maslov index of the loop. Both these phases are topological invariants and are
additive when loops are concatenated. Then we demand that the total phase be a multiple of
2π ; this is the consistency condition on the semiclassical wavefunction that selects out certain
manifolds as being ‘quantized’.

The Lagrangian manifolds we are interested in are level sets of a set of classical functions
that are the principal symbols of a set of operators, which in our application need not commute.
Quantized Lagrangian manifolds support wavefunctions that are approximate eigenfunctions
of the set of operators. The corresponding eigenvalues are the contour values of the principal
symbols, to within errors of order h̄2.

10.1. Quantizing the jm-tori

In the case of the jm-tori, whose fundamental group is Z
6, we are dealing with the

eigenfunctions of a set of independent harmonic oscillators, so the problem could not be
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more elementary from a semiclassical standpoint. There are, however, interesting issues that
arise. Let the complete set of commuting quantum observables be (Î r , Ĵ rz), r = 1, 2, 3,

defined in (8) and (9). Let us denote the Weyl symbol of an operator Â by sym(Â). Then we
have

sym(Î r ) = Ir − 1
2 , sym(Ĵ rz) = Jrz, (75)

where Ir and Jrz (the classical functions) are defined by equations (32) and (33). The operator
Î r violates our assumption in section 2 that the commuting operators defining our integrable
system should have Weyl symbols that are even power series in h̄ (since −1/2 is of order h̄). Our
assumption is valid for the harmonic oscillators Ĥ r = (1/2)

∑
µ

(
x̂2

rµ + p̂2
rµ

)
, but in defining

Î r in (8) we have subtracted the zero point energy, a constant of order h̄, Î r = (1/2)(Ĥ r − 1),

so that the eigenvalues of Î r would be the conventional quantum numbers jr for an angular
momentum, and so that the identity (13) would have a familiar form. In the following we
shall take the principal symbol of Î r to be the whole symbol, including −1/2. This achieves
the same results we would have had if we had worked with Ĥ r instead of Î r and defined the
principal symbol as the leading term in h̄, as in section 2, since sym(Ĥ r ) = 2Ir . We must be
careful, however, since the principal symbol of Î r is not Ir . For most of the other operators
we shall use, the principal symbol is obtained simply by removing the hat (for example, Jrz

above).
The basis contours on the jm-torus are most easily expressed as the contours on which

each of the angles θrµ is allowed to go from 0 to 4π while all other θrµ’s are held fixed.
We may also use any linear combination of these contours with integer coefficients and unit
determinant. In terms of the angles ψr, φr , given by (42), a convenient choice is to take one
basis contour as the path on which one ψr goes from 0 to 4π while all others ψr ’s and all φr ’s
are held fixed; this is following the Ir -flow for elapsed angle ψr = 4π. A second basis contour
may be taken to be the path on which ψr goes from 0 to 2π, and then φr goes from 0 to 2π ;
the two legs involve following the Ir -flow and then the Jrz-flow, each for elapsed angle 2π.

Doing this for r = 1, 2, 3 gives us six basis contours on the jm-torus.
The action along the first basis contour is computed as in (65). Hamilton’s equations for

Ir are dz̄rµ/dψr = (i/2)z̄rµ, so we obtain Sr1 = 4πIr, where Sr1 refers to the action along
the first basis contour. For the second basis contour, the first leg contributes an action 2πIr,

while the second leg, which follows the flow generated by Jrz, is a rotation whose action may
be computed as in (74), but with J replaced by Jr since we do not sum over r. Thus the final
answer does not vanish (Jr is nonzero on the jm-torus), and the contribution from the second
leg is 2πJrz or Sr2 = 2π(Ir + Jrz). Altogether, we have

Sr1 = 4πjr, Sr2 = 2π(jr + mr), (76)

where 1 and 2 refer to the first and second basis contours associated with a particular value of
r, and where we have replaced Ir and Jrz by their contour values jr and mr on the jm-torus.

Next we need the Maslov indices along the two basis contours. Here we follow the
computational method described in Littlejohn and Robbins (1987), which uses the determinant
of complex matrices and which is based ultimately on Arnold (1967). Similar techniques are
discussed by Mishchenko et al (1990). The method works for finding Maslov indices along
closed curves on orientable Lagrangian manifolds in R

2n. To describe the method we adopt
a general notation, in which global coordinates on phase space are (q1, . . . , qn, p1, . . . , pn).

We suppose that there exists a set of n vector fields on the Lagrangian manifold, linearly
independent at each point, so that they span the Lagrangian tangent plane at each point. In
our applications, these are the Hamiltonian vector fields associated with a set of functions
(A1, . . . , An). We consider the rate of change of the quantities qi − ipi along the j th vector
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field, which is the Poisson bracket {qi − ipi, Aj }. The set of these Poisson brackets forms
an n × n complex matrix Mij that is never singular, so det M traces out a closed loop in the
complex plane without passing through the origin when we go around a closed loop on the
Lagrangian manifold. Then the Maslov index µ associated with this loop is given by

µ = 2 wn det M, (77)

where wn refers to the winding number of the loop in the complex plane, reckoned as positive
in the counterclockwise direction. The winding number is invariant when Mij is multiplied
by any nonzero complex constant (or constant matrix), so such constants can be dropped in
the calculation.

For the jm-torus, we identify q’s and p’s with the coordinates xrµ and prµ, and A’s
with the functions (I1, I2, I3, J1z, J2z, J3z). Then we can replace qi − ipi by z̄rµ, dropping the
1/

√
2. The needed matrix elements are

{z̄rµ, Is} = i
∂Is

∂zrµ

= i

2
δrs z̄rµ,

{z̄r1, Jsz} = i
∂Jsz

∂zr1
= i

2
δrs z̄r1,

{z̄r2, Jsz} = i
∂Jsz

∂zr2
= − i

2
δrs z̄r2.

(78)

We drop the constant i/2 on the right-hand side, and choose the ordering
(I1, J1z, I2, J2z, I3, J3z) for the functions. Then the 6 × 6 matrix block diagonalizes into
three 2 × 2 blocks, and we find

det M = z̄11z̄12z̄21z̄22z̄31z̄32, (79)

to within a constant.
Along the flow of one of Ir ’s we have z̄rµ(ψr) = exp(iψr/2)z̄rµ(0) or det M(ψr) =

exp(iψr) det M(0). Therefore when the given ψr goes from 0 to 4π, the other ψr ’s being
held fixed (this is the first basis contour), det M circles the origin twice and we have
µ = 4. Along the flow of one of Jrz’s, however, we have z̄r1(φr) = exp(iφr/2)z̄r1(0)

and z̄r2(φr) = exp(−iφr/2)z̄r2(0) or det M(φr) = det M(0). Therefore along the second basis
contour the Ir -flow takes det M once around the origin (elapsed parameter ψr = 2π ), while
the Jrz-flow does nothing. Therefore the Maslov index of the second basis contour is µ = 2.

There are easier ways to find the Maslov indices of harmonic oscillators, but this calculation
is useful practice for the case of the Wigner manifold that we take up momentarily.

Now we apply the quantization conditions. For the first basis contour the total phase is
4πjr − 4(π/2), which we set to 2nrπ where nr is an integer. Thus the quantized tori must
satisfy jr = (nr + 1)/2. The allowed values of nr are determined by the fact nr < −1 is
impossible in view of the fact that Ir is nonnegative definite, and nr = −1 corresponds to a
torus of less than full dimensionality (six), so the wavefunction (1) is not meaningful. Thus we
must have nr = 0, 1, . . . . The jr in these formulae, and throughout all of the classical analysis
from section 5 up to this point, has referred to a contour value for the function Ir ; the only
difference now is that we are restricting the value of jr in order that the torus be quantized.
This jr , however, is not value of the principal symbol of the operator Î r (see equation (75)),
so the Bohr–Sommerfeld or EBK quantization rule gives the semiclassical eigenvalue of Î r ,

call it j
qu
r , as

j qu
r = jr − 1

2
= nr

2
. (80)

The semiclassical eigenvalues of Î r are nonnegative integers or half-integers, the exact answer
(not surprising in view of the fact that semiclassical quantization of quadratic Hamiltonians is
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exact). If we use the operator identity (13) to find the eigenvalues of operators J2
r , these are

also exact.
Equation (80) shows that the classical level set corresponding to quantum number j

qu
r is

jr = j
qu
r +1/2. The extra 1/2 in this formula has caused some discussion in the past and merits

a little more now. Ponzano and Regge (1968) used intuition and numerical evidence to argue
for the presence of 1/2. Miller, without knowing about Ponzano and Regge, also included
1/2, referring to the ‘usual’ semiclassical replacement for angular momenta. Presumably he
was referring to the similar replacement that occurs in the treatment of radial wave equations
(for the Langer modification, see Berry and Mount (1972), Morehead (1995)). It is not
obvious to us what the Langer modification has to do with 1/2 that occurs in the present
context, nor are we aware of any general rules about when in the asymptotics of angular
momentum theory it is correct to replace a classical j by j + 1/2 (instead of [j (j + 1)]1/2

or something else). Schulten and Gordon (1975b) and Reinsch and Morehead (1999) obtain
1/2 as a part of their proper semiclassical analyses. Biedenharn and Louck (1981b) also
speculate on the significance of 1/2. Roberts’s (1999) derivation of the asymptotics of
the 6j -symbols produces the 1/2’s in some locations but not others. He shows that the
answer is nevertheless valid to the same order in the asymptotic parameter as the result of
Ponzano and Regge, but the error terms are different. We do not know which error term is
smaller. One must be especially careful to include the 1/2’s in the right places in the phase,
as discussed by Biedenharn and Louck (1981b). According to Girelli and Livine (2005),
different choices for the semiclassical replacement for the quantum number j have been made
by various researchers in the field of quantum gravity. Here we have shown that the extra
1/2 is a necessary consequence of standard semiclassical theory. We remark in addition
that with the inclusion of 1/2, the quantized spheres in angular momentum space are those
with an area of (2j qu + 1)2π, that is, they contain a number of Planck cells exactly equal
to the dimension of the irrep, obviously a form of geometric quantization. In particular,
the s-wave j qu = 0 is represented by a sphere of nonzero radius, a case for which the
replacement jr = j

qu
r + 1/2 is declared by Biedenharn and Louck (1981b) to be ‘clearly

invalid’.
For the second basis contour on the jm-torus, the quantization condition is 2π(jr +mr)−

2(π/2) = 2πn′
r , where n′

r is an integer. With (80), this implies mr = −j
qu
r + n′

r . Combined
with the classical restriction (40), this gives the usual range on magnetic quantum numbers.
Again the semiclassical quantization is exact. In the case of Jrz, the eigenvalue of the operator
is equal to the classical contour value mr on the quantized torus (without any correction such
as we see in (80)).

10.2. Quantizing the Wigner manifold

We begin the quantization of the Wigner manifold by guessing the basis contours of the
fundamental group by inspection of figure 5. Taking the base (initial) point of the loops to
be point a in the figure, we get three independent basis contours (call them C1, C2, C3) by
going around the 3-torus TA in the three different directions. A fourth contour (call it C4) is
created by following an SU(2) rotation about some axis by angle 2π, taking us along the path
aba′, which puts us half way around the torus TA from the starting point, and then by applying
half rotations along each of the three directions on the torus, taking us down along TA in the
diagram back to the starting point a. These four contours are not independent, since

2C4 = C1 + C2 + C3, (81)
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where addition of contours means concatenation, but they are convenient for studying the
quantization conditions since a minimal set of three contours (not (C1, C2, C3), but for example
(C1, C2, C4)) is less symmetrical. The fundamental group is Z

3.

We may show the correctness of this guess by a topological argument. First, the Wigner
manifold is the orbit of an SU(2)×T 3 group action on the large phase space. Let (ψ1, ψ2, ψ3)

be coordinates on T 3, where 0 � ψr � 4π. The action of (u, (ψ1, ψ2, ψ3)) ∈ SU(2) × T 3

on the large phase space is to multiply each spinor by u and then by exp(−iψr/2). The
isotropy subgroup of this action consists of the identity (1, (0, 0, 0)) and the element
(−1, (2π, 2π, 2π)), a normal subgroup isomorphic to Z2. Thus the Wigner manifold is
diffeomorphic to (SU(2) × T 3)/Z2, itself a group manifold, of which the original group
SU(2) × T 3 is a double cover. This cover is topologically simple since SU(2) is simply
connected (we can go to the universal cover if we wish by replacing T 3 by R

3). Therefore the
homotopy classes on the Wigner manifold are in one-to-one correspondence with classes of
topologically inequivalent curves that go from the identity in SU(2)×T 3 to one of the elements
of the isotropy subgroup. Since SU(2) is simply connected, such paths are characterized by
choice of the end point (the element of the isotropy subgroup) and the winding numbers around
the torus T 3. They are thus all ‘linear combinations’ of the four contours Ck, k = 1, . . . , 4
defined above. Because of relation (81), however, the fundamental group is not Z

4, but only
Z

3.

It is easy to compute the action along these contours. Contours Cr, r = 1, 2, 3, follow the
flows of Ir ’s, and the action is the same as on the jm-torus, namely, Sr = 4πjr . Along contour
C4 the spinor rotation makes no contribution to the action while the half rotation around the
torus in all three angles gives the action

S4 = 2π
∑

r

jr . (82)

As for the Maslov indices, we compute the complex matrix of Poisson brackets whose
rows are indexed by the functions (I1, I2, I3, Jx, Jy, Jz) and whose columns are indexed by
(z̄11, z̄12, z̄21, z̄22, z̄31, z̄32). To within a multiplicative constant that we drop, the determinant
is∣∣∣∣∣∣∣∣∣∣∣∣

z̄11 z̄12 0 0 0 0
0 0 z̄21 z̄22 0 0
0 0 0 0 z̄31 z̄32

z̄12 z̄11 z̄22 z̄21 z̄32 z̄31

−z̄12 z̄11 −z̄22 z̄21 −z̄32 z̄31

z̄11 −z̄12 z̄21 −z̄22 z̄31 −z̄32

∣∣∣∣∣∣∣∣∣∣∣∣
= const ×

∣∣∣∣z̄11 z̄12

z̄21 z̄22

∣∣∣∣
∣∣∣∣z̄21 z̄22

z̄31 z̄32

∣∣∣∣
∣∣∣∣z̄31 z̄32

z̄11 z̄12

∣∣∣∣ . (83)

The final product of determinants is interesting, since these are the SU(2) invariants that
Schwinger (Biedenharn and van Dam 1965) used to construct the rotationally invariant state
|j1j2j30〉 (with z̄rµ replaced by a

†
rµ). Bargmann (1962) and Roberts (1999) make use of the

same invariants. For our purposes we need the winding number of the loop traced out in the
complex plane by the product of the three determinants as we follow the four basis contours
on the Wigner manifold.

Proceeding as we did on the jm-torus, we find that the Maslov indices along the contours
Cr, r = 1, 2, 3, are 4. For example, along the I1-flow z̄11 and z̄12 get multiplied by exp(iψ1/2),

which causes two of the three determinants to be multiplied by the same factor, so the product
gets multiplied by exp(iψ1), which has winding number 2 and hence Maslov index 4 when
ψ1 goes from 0 to 4π. This is the same answer we found along the Ir -flows on the jm-torus;
this was not exactly a foregone conclusion, even though the contours are the same, because
the tangent planes are different. On the other hand, in both cases we find the result (80) for
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the eigenvalues j
qu
r of the operators Î r , which of course must not depend on how we compute

them. As for contour C4 the first leg, a rotation by angle 2π about some axis, leaves all three
2 × 2 determinants in (83) invariant, so the big determinant in the complex plane does not
move. As for the second leg, since each ψr only goes from 0 to 2π we get a winding number
of 1 along each Ir -flow, but since there are three of them the total winding number is 3 and
Maslov index is 6.

Combining this result with (82), we obtain the Bohr–Sommerfeld quantization condition
for contour C4 in the form

2π
∑

r

jr − 6
π

2
= 2π × integer, (84)

or, with (80), ∑
r

j qu
r = integer. (85)

This is precisely the condition that the three quantum angular momenta must satisfy, in addition
to the triangle inequalities, that they may add up to zero. It emerges in a semiclassical analysis
because the Wigner manifold is not quantized otherwise.

In conclusion, the Bohr–Sommerfeld quantization conditions applied to the jm-torus and
the Wigner manifold give us a complete (and exact) accounting of all the quantum numbers
and the restrictions on them that appear in the coupling of three angular momenta with a
resultant of zero. It also allows us to identify the classical manifold (that is, its contour values)
with a given set of quantum numbers.

11. The amplitude determinant

The generic semiclassical eigenfunction of a complete set of commuting observables is given
by (1), with the amplitude determinant expressed in terms of Poisson brackets by (2). These
formulae apply in particular to the state |j1j2j3m1m2m3〉 on the left of the matrix element (22),
which is supported by the jm-torus in the large phase space. The state on the right, |j1j2j30〉,
however, which is supported by the Wigner manifold, is an eigenfunction of observables that
do not commute. Therefore we must rethink the derivation of equations (1) and (2) to see what
changes in this case. In particular, we must see what happens to the Poisson bracket expression
for the amplitude determinant, which is the solution of the simultaneous amplitude transport
equations for the collection of observables. As it turns out, nothing changes, the wavefunction
is still given by equations (1) and (2), with the (now noncommuting) observables used in the
amplitude determinant. In addition, there is a certain understanding about how the volume V

in (1) is computed, since the angles α conjugate to A’s are no longer meaningful.
Once this is done, we must evaluate the scalar product of the two wavefunctions by

stationary phase. If both states were eigenstates of complete sets of commuting observables,
then the answer would be (5) with amplitude determinant (4), but again we must rethink the
derivation of this result since the observables for one of the wavefunctions do not commute.
Again, the answer turns out to be given by formulae (5) and (4) of section 2, with a proper
understanding of the meanings of the volume factors.

Having established these facts, we can then proceed to the (easy) calculation of the
amplitude determinant for the 3j -symbol in terms of Poisson brackets, and finally put the
remaining pieces together to get the leading asymptotic form of the 3j -symbols.

11.1. Amplitude determinant for noncommuting observables

We begin showing that equations (1) and (2) are valid for the state |j1j2j30〉, with a proper
definition of the volume factors. The classical functions defining the Wigner manifold are
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(I1, I2, I3, Jx, Jy, Jz). Let us refer to these collectively as Ak, k = 1, . . . , 6, let us write
xi, i = 1, . . . , 6, for the configuration space coordinates instead of the notation (x11, . . . , x32)

used above, and let us adopt the summation convention. The functions Ak form a Lie algebra,
that is, {Ak,Al} = cm

klAm, where cm
kl are the structure constants. The Wigner manifold is

a compact group manifold with this Lie algebra, on which the Haar measure is both left-
and right-invariant. This density is also invariant under the flows generated by the right-
invariant vector fields, which in our case are the Hamiltonian flows of the functions Ai. The
projection of this density onto configuration space is the density that provides the solution
of the simultaneous amplitude transport equations for the functions Ai. These are the basic
geometrical facts, which we now present more explicitly in coordinate language.

The amplitude transport equations for the functions Ak, k = 1, . . . , 6, are

∂

∂xi

[
�(x)

∂Ak

∂pi

]
= 0, (86)

where pi are the momenta conjugate to xi. These are six simultaneous equations that must be
solved for the density �(x) on configuration space. Note that ∂Ak/∂pi = {xi, Ak} = ẋi

(k), the
latter being notation we shall use for the velocity in configuration space along the Hamiltonian
flow generated by Ak. The amplitude transport equation is a continuity equation, which is
form-invariant under general coordinate transformations.

Let us pick one of the branches of the inverse projection from configuration space onto the
Lagrangian (Wigner) manifold. We shall suppress the branch index in the following. Let ui,

i = 1, . . . , 6, be an arbitrary set of local coordinates on the Wigner manifold, which we extend
in a smooth but arbitrary manner into some small neighbourhood of the Wigner manifold, so
that partial derivatives of ui with respect to all phase space coordinates are defined. Assuming
we are not at a caustic, the transformation from xi to ui is locally one-to-one, and the Jacobian
∂ui/∂xj is nonsingular. Under the inverse projection or coordinate transformation x → u,

the flow velocity transforms according to

u̇i
(k) = ∂ui

∂xj
ẋ

j

(k) = {ui, Ak} = Xi
(k), (87)

which defines the quantities Xi
(k). As a matrix, Xi

(k) is nonsingular because the flow vectors
are linearly independent of the Wigner manifold. As for the density, it transforms according
to

σ(u) = �(x)

∣∣∣∣det
∂xl

∂um

∣∣∣∣ , (88)

so that the amplitude transport equations, lifted to the Wigner manifold, become
∂

∂ui

[
σ(x)Xi

(k)

] = 0. (89)

Now define �
(k)
j as the matrix inverse to Xi

(k),

�
(k)
i Xi

(l) = δk
l . (90)

As we will prove momentarily, the solution of equations (89) is

σ(u) = ∣∣det �(k)
j

∣∣, (91)

which, by (88), gives us the solution of (86),

�(x) =
∣∣∣∣detkl

(
�

(k)
i

∂ui

∂xl

)∣∣∣∣ =
∣∣∣∣detkl

(
Xi

(k)

∂xl

∂ui

)∣∣∣∣
−1

=
∣∣∣∣detkl

(
u̇i

(k)

∂xl

∂ui

)∣∣∣∣
−1

= ∣∣detkl ẋ
l
(k)

∣∣ = |detkl{xl, Ak}|−1. (92)
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In carrying out these manipulations it is important to note that ∂ui/∂xj is taken at constant Ak

not pk. Thus the amplitude determinant for the wavefunction ψ(x) associated with the Wigner
manifold has the same Poisson bracket form shown in (2), that is, in spite of the fact that Ai

do not commute.
The essential differential geometry of these manipulations is that X(k) = Xi

(k)∂/∂ui are
the Hamiltonian vector fields on the Wigner manifold associated with functions Ak, λ

(k) =
�

(k)
i dui are the dual forms, λ(k)X(l) = δk

l , and σ = λ1 ∧ · · · ∧ λ6 = σ(u) du1 ∧ · · · ∧ du6 is
the Haar measure. Condition (89) is equivalent to LX(k)

σ = 0.

To prove (91) in coordinates we substitute it into (89) and expand out the derivative,
obtaining an expression proportional to

Xi
(k),i − Xi

(k)X
l
(m),i�

(m)
l (93)

using commas for derivatives. Then we use the Lie bracket of the vector fields X(k),

[X(k), X(m)]
l = Xi

(k)X
l
(m),i − Xi

(m)X
l
(k),i = −cn

kmXl
(n), (94)

where cn
km are the structure constants. Here we use the identity expressing the Lie bracket of

Hamiltonian vector fields for two functions in terms of the Hamiltonian vector field of their
Poisson bracket, [XH,XK ] = −X{H,K} (Arnold 1989). Thus (93) becomes simply cm

km, which
vanishes since for the group in question the structure constants are completely antisymmetric.

Finally to normalize the semiclassical eigenfunction supported by the Wigner manifold
we use the stationary phase approximation to compute the integral∫

dx

∣∣∣∣∣
∑

br

�(x)1/2 exp[iS(x) − iµπ/2]

∣∣∣∣∣
2

, (95)

where the sum is over branches and the branch index is suppressed. Cross terms do not
contribute, and when the integral is lifted to the Wigner manifold it just gives the volume of
that manifold with respect to the Haar measure,∑

br

∫
dx

|det{xi, Aj }| =
∫

du σ(u) = VW, (96)

where VW is given by (46).

11.2. Matrix elements for noncommuting observables

Now we write the 3j matrix element (22) as 〈b|a〉, where A = (I1, I2, I3, Jx, Jy, Jz) and
B = (I1, I2, I3, J1z, J2z, J3z). Actually this is not the most convenient form, since Jz in the
A-list is a function of Jrz in the B-list. We fix this by performing a canonical transformation
(φ1, φ2, φ3, J1z, J2z, J3z) → (φ̃1, φ̃2, φ̃3, J̃ 1z, J̃ 2z, Jz) on the functions in the B-list, generated
by

F2(φ1, φ2, φ3, J̃ 1z, J̃ 2z, Jz) = φ1J̃ 1z + φ2J̃ 2z + φ3(Jz − J̃ 1z − J̃ 2z). (97)

This gives J̃ 1z = J1z, J̃ 2z = J2z, Jz = J1z+J2z+J3z and φ̃1 = φ1−φ3, φ̃2 = φ2−φ3, φ̃3 = φ3.

The linear transformation in the angles has unit determinant, so the volume of the jm-torus
is still given by (43). Dropping the tildes, the B-list is now (I1, I2, I3, J1z, J2z, Jz), which has
four functions in common with the A-list.

Now the integral we must evaluate is

〈b|a〉 = 1√
VAVB

∫
dx

1

|det{xi, Aj }|1/2

1

|det{xi, Bj }|1/2

∑
br

exp{i[SA(x) − SB(x) − µπ/2]},

(98)
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where the sum is over all branches of the projections of the two manifolds, and where µ just
stands for whatever Maslov index appears in a given term (different µ’s are not necessarily
equal). An integral like this was evaluated by Littlejohn (1990), using the angles conjugate to
A’s and B’s, but those do not all exist in the present circumstances and we must evaluate the
integral in a different way.

Let us write A = (C,D) and B = (C,E), where C = (I1, I2, I3, Jz) are the four
observables in common in the A- and B-lists, and where D = (Jx, Jy) and E = (J1z, J2z)

are the two pairs of observables that are distinct. The stationary phase set of the integral (98)
consists of points x where ∂(SA − SB)/∂xi = 0, that is, it is the projection onto configuration
space of the intersection of the A-manifold and the B-manifold. That intersection, which we
denote by I, was studied in section 8 (it is a 4-torus). It is the simultaneous level set of all of
A’s and B’s, and at the same time the orbit of the commuting Hamiltonian flows generated by
C’s. Its projection onto configuration space is a four-dimensional region.

We introduce a local coordinate transformation in configuration space x → (y, z) where
the four y’s are coordinates along the stationary phase set and the two z’s are transverse to
it. We let the stationary phase set itself be specified by z = 0. We let (u, v) be the momenta
conjugate to (y, z). Then the two amplitude determinants in (98) may be combined with the
Jacobian of the coordinate transformation to result in the square root of the product of two
determinants, one of which is

det
∂(y, z)

∂x
det{x,A} = det

({y, C} {y,D}
{z, C} {z,D}

)
, (99)

and the other of which is the same but with the substitutions A → B,D → E. But since C’s
generate flows along I, we have {zi, Cj } = 0, and the lower left block of the two matrices
vanishes. Thus, the product of the two determinants becomes

[det{y, C}]2 det{z,D} det{z,E}, (100)

the square root of which appears in the denominator of the integrand. Evaluating the final two
Poisson brackets in the (y, z; u, v) canonical coordinates, we have

{zi,Dj } = ∂Dj

∂vi

, {zi, Ej } = ∂Ej

∂vi

. (101)

We perform the z-integration by stationary phase, expanding SA and SB, regarded as
functions of (y, z), to second order in z for a fixed value of y, and simply evaluating the
amplitude at z = 0 (that is, on I). To within a phase, the z-integration gives

2π

∣∣∣∣det

(
∂2SA

∂z∂z
− ∂2SB

∂z∂z

)∣∣∣∣
−1/2

. (102)

The determinant in this result must be multiplied by the determinants of the matrices (101) to
get the overall determinant in the denominator after the z-integration. The product of these
three determinants is the determinant of the matrix

∂D

∂v

[(
∂v

∂z

)
yCD

−
(

∂v

∂z

)
yCE

] (
∂E

∂v

)T

, (103)

where it is understood that a partial derivative stands for a matrix whose row index is given by
the numerator and column index by the denominator, unless the matrix transpose or inverse
is indicated, in which case the rule is reversed. Also, if a partial derivative is shown without
subscripts, then it is assumed that it is computed in the canonical coordinates (y, z; u, v), and
otherwise the variables to be held fixed are explicitly indicated. In the two middle matrices in
(103), the variables held fixed amount to differentiating v with respect to z along the A- and
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B-manifolds, respectively, since ∂SA/∂z = v(x,A) and ∂SB/∂z = v(x, B). Note that these
two matrices are symmetric.

Now we express the two matrices in the middle of (103) purely in terms of
partial derivatives computed in the canonical (y, z; u, v) coordinates. We do this
by writing out the Jacobian matrix ∂(y, z;C,D)/∂(y, z; u, v) and the inverse Jacobian
∂(y, z; u, v)/∂(y, z;C,D), multiplying the two together to obtain a series of identities
connecting the forward and inverse Jacobian blocks, and then solving for the inverse Jacobian
blocks in terms of the forward ones. We note that the block ∂C/∂v of the forward Jacobian
vanishes, since it is {z, C}. Thus we find(

∂v

∂z

)
yCD

=
(

∂D

∂v

)−1
[

∂D

∂u

(
∂C

∂u

)−1
∂C

∂z
− ∂D

∂z

]
,

(
∂v

∂z

)
yCE

=
[(

∂C

∂z

)T (
∂C

∂u

)−1T (
∂E

∂u

)T

−
(

∂E

∂z

)T
] (

∂E

∂v

)−1T

.

(104)

Upon substituting these into (103), that matrix becomes

∂D

∂v

(
∂E

∂z

)T

− ∂D

∂z

(
∂E

∂v

)T

+
∂D

∂u

(
∂C

∂u

)−1
∂C

∂z

(
∂E

∂v

)T

− ∂D

∂v

(
∂C

∂z

)T (
∂C

∂u

)−1T (
∂E

∂u

)T

, (105)

where the first two terms are the beginning of the Poisson bracket {E,D}. As for the last
two terms, we write out the vanishing Poisson brackets {C,E} and {C,D} in the (y, z; u, v)

coordinates, making use of ∂C/∂v = 0, to obtain

∂C

∂z

(
∂E

∂v

)T

= ∂C

∂u

(
∂E

∂y

)T

− ∂C

∂y

(
∂E

∂u

)T

,

∂D

∂v

(
∂C

∂z

)T

= ∂D

∂y

(
∂C

∂u

)T

− ∂D

∂u

(
∂C

∂y

)T

.

(106)

Actually the matrix of Poisson brackets {C,D} does not vanish everywhere in phase space,
just on the A- (or Wigner) manifold, and in particular on the intersection I which is where we
are evaluating them. Now substituting equations (106) into the last two terms of (105), those
terms become

∂D

∂u

(
∂E

∂y

)T

− ∂D

∂y

(
∂E

∂u

)T

+
∂D

∂u

[(
∂C

∂y

)T (
∂C

∂u

)−1T

−
(

∂C

∂u

)−1
∂C

∂y

] (
∂E

∂u

)T

, (107)

in which the first two terms give us the remainder of the Poisson bracket {E,D}. As for the last
major term, the factor in the square brackets vanishes, as we see by writing out the vanishing
Poisson bracket {C,C} in coordinates (y, z; u, v) and using ∂C/∂v = 0.

As a result the integral (98) becomes

〈b|a〉 = 2π√
VAVB

∑
br

∫
dy

|det{y, C}|
ei(SI −µπ/2)

|det{E,D}|1/2
, (108)

where the branch sum runs over all branches of the projection of I onto configuration space
as well as the two disconnected components of I (the two 4-tori discussed in section 8), and
where SI is the phase on a given connected component of I (this is the phase ±Sjm computed
in section 9). We have also dropped an overall phase, and we are not attempting to compute
the Maslov indices in detail. The amplitude determinant has been reduced to a 2 × 2 matrix
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of Poisson brackets of the observables in the A- and B-lists that differ exactly as in (4).
Calculating this matrix explicitly, we find

|det{E,D}| =
∣∣∣∣{J1z, Jx} {J1z, Jy}
{J2z, Jx} {J2z, Jy}

∣∣∣∣ =
∣∣∣∣Jy1 −Jx1

Jy2 −Jx2

∣∣∣∣
= |Jx1Jy2 − Jx2Jy1| = |z · (J1 × J2)| = 2�z, (109)

where �z is the projection of the area of the triangle � onto the x–y plane (see equation (50)
and figure 2 of Ponzano and Regge (1968)). This quantity is invariant under rotations about
the z-axis, that is, it Poisson commutes with Jz. It also Poisson commutes with the other three
variables in the C-list, (I1, I2, I3), and so is constant on the intersection I and can be taken
out of the y-integral. The same applies to the phase factor, since SI is also constant on the
I-manifold. Then the y-integral can be done, since | det{y, C}| is just the Jacobian connecting
y with the angle variables conjugate to C = (I1, I2, I3, Jz), denoted above by (ψ1, ψ2, ψ3, φ).

Thus the y-integral just gives the volume VI of the intersection I with respect to these angles,
see (56). In fact, had the variables C not been commuting, but if they had formed a Lie algebra,
then VI would be the volume of I with respect to the Haar measure of the corresponding group.
This circumstance arises, for example, in a similar treatment of the 6j -symbol.

As a result of these rather lengthy manipulations of amplitude determinants, we obtain
the final, simple result,

〈b|a〉 = 2π√
VAVB

∑
br

VI

ei(SI −µπ/2)

|det{E,D}|1/2
, (110)

where the branches now run over just the two disconnected pieces of the intersection I. This
is a version of (5), with the right understanding of the volume measures, generalized to the
case at hand in which the observables do not commute. The actual calculation of the final
amplitude determinant takes just one line, equation (109).

In fact, for our application the volume VI and the remaining amplitude determinant are the
same for both branches and can be taken out of the sum. The relative Maslov index between
the two branches is 1; we will not belabour this point since the answer is already known. We
simply note that by splitting the Maslov phase iπ/2 between the two branches and substituting
VA = VW, VB = Vjm, we obtain to within an overall phase the result of Ponzano and Regge,(

j1 j2 j3

m1 m2 m3

)
= (phase) × cos(Sjm + π/4)√

2π�z

. (111)

12. Conclusions

In many ways the 3j -symbol is not as interesting as the 6j -symbol, of which it is a limiting
case. We intended our work on the 3j -symbol as a warm-up exercise, expecting a routine
application of semiclassical methods for integrable systems. The nongeneric Lagrangian
(Wigner) manifold was a surprise. Similar nongeneric Lagrangian manifolds occur also in the
semiclassical analysis of the 6j - and 9j -symbols.

If all one wants is a derivation of an asymptotic formula, then there are many ways to
proceed. For example, one can simply take the expression for the symbol due to Wigner
(3j) or Racah (6j) as a sum over a single index, and apply standard asymptotic methods
(Stirling’s approximation, Poisson sum rule, etc). But if one wants a derivation that reveals the
geometrical meaning of the classical objects that emerge (the triangle, the tetrahedron, etc),
then an approach such as ours may be preferable.
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Our approach is more geometrical than earlier ones, and in that respect is closer in spirit
to the work of Roberts (1999), Freidel and Louapre (2003) and later authors. It is likely that
at some deeper level all these methods are the same, although superficially we see only a little
similarity between our work and these others.

One may also desire a method that makes the symmetries of the symbol manifest.
Our analysis does not do this for the 3j -symbol, but those symmetries are not manifest
in Wigner’s definition of the 3j -symbol that we employ as our starting point, either. To bring
the symmetries out it seems necessary to employ some construction related to Schwinger’s
generating functions, which involve lifting the definitions into higher dimensional spaces.

Our method of calculating amplitude determinants in terms of Poisson brackets may have
computational advantages in other applications as well. The method can be remarkably easy
to use. For example, the 6j -symbol can be defined as a matrix element,{

j1 j2 j12

j4 j3 j23

}
= const × 〈j1j2j3j4j230|j1j2j3j4j120〉, (112)

which is the unitary matrix in (j12, j23) defining a change of basis in the subspace in which
four angular momenta of given lengths add up to zero (0 means J = 0). In this case there are
eight observables on each side of the matrix element, of which seven are common and one is
different. Thus the amplitude of the 6j -symbol is the inverse square root of the single Poisson
bracket,

{J2
23, J2

12} = 4J1 · (J2 × J3), (113)

as follows immediately from (37). One sees immediately that it is proportional to the volume
of the tetrahedron. A similarly easy calculation is possible for the 9j -symbol. It is harder,
however, to express these amplitudes in terms of the quantum numbers (the magnitudes jr ),
that is, to translate these magnitudes into vectors Jr that lie on the stationary phase set. We
shall report on these and other extensions of our work in future publications.
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